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ABSTRACT 

A broadly used type of ultrasonic flowmeters is based on the measurement of the transit time of a 
acoustic pulse against the flow and in direction of the flow. To determine the mean flow velocity or 
the flow rate the absolute time of each puls and the difference time between two opposite pulses of 
the same acoustic path are required.  

The most difficult problem is to reach a sufficient time resolution because the difference transit time 
can reach small values (dependent on the diameter of the section and the flow velocity).  

This paper presents the effects of uncertainty due to the measurement of the absolute and difference 
transit times. 

1. INTRODUCTION 
 
The acoustic discharge measurement method ADM is based on the superposition of the propagation 
velocity of a transmitted acoustic pulse (figure 1) with the flow velocity. To determine the mean 
velocity of the flow, the transit times tu and td of an upstream and a downstream signal are needed. 

The acoustic sensors are mounted at the pipe wall with an angle α to the mean flow (fig. 2). The 
mean axial velocity is computed by the equation (see [1]) 
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Figure 1- A typical recieved acoustic 
signal where tu,d denotes the transit 
time 

Figure 2- Arrangement of two 
acoustic sensors in a circular 
section 
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where L is the length of the acoustic path (distance between the two transducers) and δt denotes the 
transit time difference tu–td.  The actual acoustic velocity c in water is not needed for the 
determination of the path velocity as can be seen from equation (1). 
The most difficult part of the measurement is the determination of the two transit times tu,d with an 
appropriate algorithm, where the signal is digitized with an A/D converter. Special care must be 
given to an accurate determination of the transit time difference.  
 
In the following two approaches for the 
influence of transit time measurement 
errors on the determination of the path 
velocity vax are presented.  
 
 The first approach assumes the 

measurement of the absolute transit 
times of an up- and downstream 
sonic pulse (tu and td) of the same 
acoustic path,  

 
 the other  just one absolute (tu or td) 

and  the difference transit time δt 
measurement.  

 
It is shown that the accuracy of the 
second approach is approximately 
twice the accuracy of the first one. 
 
 
2. TYPE OF ERRORS 

 
There exist mainly two types of errors that occur in a measurement system, random and 
systematical errors.  
 
2.1 Random errors 
The characteristic of these errors is that they are stochastical. In most cases one assumes that the 
errors of consecutive measurements are independent and thus are also uncorrelated. The errors are 
specified by a probability density function. Two different probability density functions are 
important in a typical data aquisition measurement chain: 
 
Normal distribution (Gaussian): The normal probability distribution is characterized by a mean µn 
and a variance σn

2. This distribution is used for all kinds of unknown uncertainties. It is also a fact 
that the sum of n independent random variables which are not normal distributed, converges to a 
normal distribution for large n. 

 
Uniform distribution: This distribution is often used in digital 
signal processing for A/D conversion effects and finite precision 
effects in computation. The error is uniformly distributed with a 
height of 1/Q over a finite interval of length Q as shown in Fig. 3. 
 

The mean of this distribution is µu is zero and the variance σu
2 is 

given by (see [2]): 
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The parameter Q is typically the quantization step in finite precision arithmetic or in A/D 
conversion. For N consecutive measurements of statistical independent data the variance of the 
error of the averaged results goes down as: 

N
averagednot

averaged

2
_2 σ

σ =  

 
2.2 Systematic errors 
Systematic errors are unknown but bounded, highly dependent and correlated. For example these 
errors are caused by deviations from device dimensions. Systematic errors can not be detected by 
repeated measurements . This means that successive measurements cannot average out such errors. 
They can be compensated if they are known. Otherwise worst case assumptions have to be applied 
for the determination of its effect. 
For a single measurement it makes little difference whether the error is systematic or statistical. For 
systematic errors the worst bounds have to be used, while for statistical errors a worst case bound 
has to be specified if the distribution is gaussian (e.g. 3 times the standard deviation).  
 
2.3 Signal processing chain 
At different stages in the measurement chain from the physical phenomena to be measured to the 
transit time errors occur. In Fig. 5 six error locations are introduced.  

 
 

                                      Figure 5- Occurence of errors in the measuring chain 
 
These locations are the following: 
 
1) Physical process: The hydraulic conditions determine the type and magnitude of errors or 

uncertainties. The signal varies due to various physical causes. The nature of these effects are of 
the statistical type with the simplified assumption of a normal distribution. 

δt 
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2) A/D converter: The A/D converter digitizes the incoming analog signal. The conversion to e.g. 
12 bits generates with not to stringent assumptions a quantization noise which is uniformly 
distributed. 

3) Application parameters: These parameters are given by the configuration and can be determined 
to a certain accuracy. They concern mainly geometrical data, e.g. the path length L and angle α. 
The errors generated here are of the systematic type. 

4) Algorithm: The structure and the type of algorithm determine the existence and magnitude of 
systematic errors. The number of taps chosen, limit for instance the performance of a FIR low 
pass filter. 

5) Signal processing: This part processes the incoming data with a finite arithmetic. Therefore 
quantization errors occur with the quantization of the coefficients and at performing arithmetic 
operations. The coefficient quantization is a systematic error while the arithmetic errors can be 
considered statistical with a uniform distribution. 

6) Output from DSP: This output quantization can be viewed like an A/D conversion. Either the 
results are quantized as fine as the intermediate results of the signal processing path or they are 
quantized more coarsely. This again is considered a statistical error. 

 
After the determination of td ,tu and δt equation (1) is applied to obtain vax. For the error analysis 
uncertainties or inaccuracies in L, α, td ,tu and δt are of importance. Now we consider the following 
simplifications: 
 
1) We consider only errors of the transit time determination and not of the geometrical parameters. 

If the geometrical parameters L and α play a role in the error analysis, then its effect will be felt 
twice: In the signal processing chain from the signal input y(t) to the transient times and from 
the transient times to the path velocities. 

 
2) For the worst case analysis we restrict ourselves to the output quantization error εQ 6) only, 

which gives bounds to minimal and maximal errors. It must be noted that an unknown 
systematic offset in both absolut transit times tu and td, do not affect δt, because of the 
subtraction of the absolute times for the determination of δt. This offset can therefore be of an 
order of magnitude larger than the output quantization. Only if the path length L (<0.5m) and 
the path velocity vax (<0.5m/s) are very small, this offset can no longer be neglected. If 
systematic errors in tu and td  do not cancel they have to be introduced as a separate error source 
εs, which can be incorporated into the output quantization source 6. The result will be a much 
coarser quantization, but the analysis will remain the same. 

 
3) The statistical uncertainties of the entire signal processing chain (except the quantization 6) 

from the physical process to the transit times is summarized in a single noise source εs with 
normal distribution with mean µs and variance σs

2. The output quantization εQ with uniform 
noise distribution 6) is treated seperately and is considered uncorrelated to the noise source 
εs.and thus can mean and variances can be added to a single mean and variance 
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Figure 6 - Error model for error propagation for path velocities determination 
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3. PATH VELOCITY ERROR FROM UP- AND DOWNSTREAM ABSOLUTE TRANSIT 
TIME MEASUREMENTS 
 
3.1 Systematic errors 
Systematic errors of a function F(x1, x2,..., xn) with regard to errors in x1, x2,..., xn can be determined 
in a first approximation by linearization (see [3]): 
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For worst case analysis all terms have to be taken positive and for the ∆xk’s the maximal possible 
value have to be choosen. For simplicity reason the index 0 is omitted in the forthcoming analysis.  
 
If the two absolute transit times are measured one obtains for the path velocity from equation (1) 
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With equation (4) it follows: 
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With the simplification ∆L=0 and ∆α=0 we obtain: 
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The resolution Q in absolute time is in the order of ns. If we assume a resolution of Q=1ns, then the 
maximum quantization error for the rounding operation is +/-Q/2=+/-0.5ns. For the worst case both 
errors ∆tu and ∆td have a maximal value of Q/2=0.5ns. Equation (6) reduces to 
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Figures 7,8 and 9 show the relative error as a function of path length, path velocity and time 
resolution Q. Fig. 9 is a zoom of Fig. 8 for small velocities. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 - Zoom of figure 8 for small velocities (0.1..2.1m/s) 
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Figure 7 - Relative error in velocity as a function 
of velocity, absolute time resolution Q and fixed 
path length (diameter D=0.3m) 
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Figure 8 - Relative error in velocity as a function 
of velocity, path length (diameter D) and fixed 
absolute time resolution Q of 1ns 
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The curves show all the same trends. For small velocities the relative error increases hyperbolically. 
Small time resolutions Q and large diameters reduce the relative error substantially.  
If we assume tu ≅ td , one gets from equation (7) the simple result: 
 

(8)                           
t

Q
v
verrorrelative
ax

ax

δ
=

∆
≅  

 
 
The statistical error of a function F(x1, x2,..., xn) with regard to errors in x1, x2,..., xn  are described by 
the Gaussian error propagation law. The variances of each error source are added weighted with 
some factors. 
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(Where E(x) denotes the expected value.) The relative variance is the given by 
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and the relative standard deviation 
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For the path velocity determination we assume statistical errors in the transit times only and not in 
the geometrical parameters. Thus one obtains the following relative standard deviation for the path 
velocity 
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Formula (9) can be simplified by the following assumptions: 
 

 Both errors in the absolute transit time determination have the same statistics  
 Both absolute transit times are nearly equal 

 
Then we get for (10): 
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When comparing equation (11) with equation (8), one can recognise the same dependency on δt. 
The expression in the denominators differs, but are a mere scaling of the same curve. That means 
the curves of the systematic error can be used for the statistical error too. 
With the assumption of the error model shown in Fig.6, the variance of σd

2 resp. σu
2  is given by: 
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4. PATH VELOCITY ERROR FROM ONE UP- OR DOWNSTREAM ABSOLUTE 
TRANSIT TIME AND THE TRANSIT TIME DIFFERENCE MEASUREMENT 
 
 
We start from the same basic equation (1) and assume a measurement td in the downstream path and 
a measurement of the transit time difference δt with corresponding measurement errors ∆td and 
∆δt : 
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The same analysis as before yields with ∆L and ∆α =0 
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If we assume that td is much larger than δt (similar to td ≅ tu) , then equation (13) reduces to : 
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If we compare this result with equation (8), we identify the first term of the right hand side of 
equation (14) with the right hand side of equation (8), if ∆δt is equal to Q. This means if the time 
resolution is 2ns the rounding error for δt is ±1ns. So the second term of the right hand side of 
equation (14) makes the difference between the two measurement methods. But in most cases this 
term is negligible compared to the first term. 

 
The factor 2 in the second term means that an error in the absolute transit time has a double weight 
compared to an error in the transit time difference. But as already mentioned above td>>δt , the 
second term is of no importance. As an example, the absolute transit times of the installation (with a 
diameter of 0.5m) at the HTA in Lucerne are of approximately 260µs for the short paths and 450µs 
for the long paths and the transit time differences are for v=0,5...8m/s approximately between 
0.1...2µs. Put in equation (14) yields for the most pessimistic case : 
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That means in this case an error in δt is about 2300 times worse than the same error in td. 
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Usually the diameter of such a conduit is larger than 0.5m. In this case the error due to the 
measurement of the absolut transit time is really negligible. 
Figures 10 and 11 show the the dependency of the relative error with respect to the transit time  

 
 
5. CONCLUSIONS 
 
If the relative velocity error has to be kept below 0.5% (for velocities larger than 1m/s and a 
diameter of 0.5m), then the transit time difference has to be determined with a time resolution of 
Q=1ns (Fig. 12) in the worst case for a single measurement. Successive measure- ment decreases 
the error according to the "root-law" of statistics (see [3]). 
 
In the first case of two absolute 
transit time measurements, both 
measurements should not have a 
maximal rounding error of larger 
then  ±Q/2.  
In the case of measuring the 
difference time and one absolute 
transit time the maximal rounding 
error could reach ±Q (Fig. 10), 
whereas the time resolution for the 
absolute transit time measurement 
has to be only in the order of 100ns 
(Fig. 11).  
 
Hence the accuracy of the second 
approach is twice the accuracy of the 
first one. 
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Figure 10 -  Relative velocity error in function of 
the transit time difference for different rounding 
errors in ns with the corresponding time resolu- 
tion Q in brackets. 

Figure 11 - Relative velocity error in function 
of the absolut transit time (in µs) for different 
time resolution (errors) in ns.. 

Figure 12 -  Comparison between the two different 
approaches for a fixed time resolution (Q=1ns) and 
diameter (0.5m). 
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