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ABSTRACT 
 
This paper shows how to estimate the uncertainty of the experimental measurements of the Chézy-
Strickler-Manning and Colebrook-White roughness coefficients in circular pipes, on the basis of the 
uncertainties of the measurements of diameter, discharge and headloss by which such roughness 
coefficients are evaluated. In fact the importance of Chézy-Strickler-Manning and Colebrook-White 
friction formulas is fundamental in both theoretical and applied Hydraulics; therefore, it is often 
very relevant to estimate also the uncertainty rates of their roughness coefficients, like in the 
problems related to the verification of the flow conveyance capacity. The relationships among those 
uncertainties are hereby summarized, also in adimensional forms. Finally, a numerical example of a 
realistic application is shown, regarding the individuation of the Chézy-Strickler-Manning and 
Colebrook-White roughness coefficients and their uncertainty in a circular pipe. 
 

INTRODUCTION 
 
A suitable and reliable evaluation of the roughness coefficient and of is uncertainty directly affects 
the different aspects of theoretical and applied Hydraulics, for example in the analyses of water 
hammer damping and water supply conveyance capacity; in particular, about this second field of 
application, there are essentially two problems: 

 verification of the flow conveyance capacity Q, given the pipe length L, its diameter D, its 
roughness coefficient and the available head Y; 

 design of the minimum diameter D required to convey a fixed flow Q, given the pipe length 
L, its roughness coefficient and the available head Y. 

Indeed, the second of these problems is slightly less important, since the minimum diameter 
theoretically required is in practice replaced by the immediately bigger size available on the market. 
The experimental assessment of the roughness coefficient can be reached through the main scheme 
reported in Figure 1, where a pipe with a diameter D is fed by a constant flow Q and the headloss Y 
is measured by a piezometric gauge which has its two sensors set at a distance L along the pipe. 
 

Figure 1 – General scheme of an experimental device to evaluate the roughness coefficient by means of 
measurements of pipe diameter D, flow Q, headloss Y and length L between the piezometric sensors. 
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1   CHÉZY-STRICKLER-MANNING FRICTION FORMULA 
 
1.1  Generalities 
Remembering that, by definition: 

LYJ /=  (1) 

the estimation of the friction loss per unit of pipe length J through the Chézy-Strickler formula 
(Chézy, 1776; Strickler, 1923) is very popular because of its monomial structure: 
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that allows to find out in an explicit form each one of the involved physical variables, which are the 
diameter D, the Chézy-Strickler roughness coefficient KS and the flow Q, or the mean velocity V: 
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Q

A
QV

⋅π
==  (3) 

By the way, the dimensional factor 10.29 is related to the normal choice of considering the units of 
Q, KS and D according to the international units system (m³/s for Q, m⅓/s for KS and m for D). 
Especially in Anglo-Saxon scientific literature and technical habits, it’s very common to meet the 
so-called Chézy-Manning formula (Manning, 1891; Yen, 1991), where, instead of the Chézy-
Strickler roughness coefficient KS , there is the Chézy-Manning roughness coefficient: 

SKn /1=  (4) 

Of course it’s very easy to apply eq. (2) to solve any kind of pipe verification or design problem. 
Nevertheless, it must be remarked that it is valid only if the flow regime is fully turbulent, that is 
the condition under which J becomes completely independent from the density ρ and the dynamic 
viscosity µ of the liquid. This is expressed by the inequality (Nikuradse, 1932; Moody, 1944): 
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where g is the acceleration due to gravity, ε is the size representing the pipe roughness (see, further 
below, the description of the Colebrook-White friction formula), and λ is the adimensional friction 
number of the Darcy-Weisbach expression (Weisbach, 1845; Darcy, 1857; Darcy and Bazin, 1865): 
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⋅⋅
⋅λ=
2

2
 (6) 

 
1.2  Individuation of the Chézy-Strickler-Manning roughness coefficient and of its uncertainty 
Starting from eq. (2), the Chézy-Strickler roughness coefficient KS can be drawn as: 

2/13/813/52/13/813/5 )/(25.025.0 −−−−−−−− ⋅⋅⋅π⋅=⋅⋅⋅π⋅= LYDQJDQKS  (7) 

Under the hypothesis that L gives a uncertainty contribute which is negligible in comparison with 
the ones coming from D, Q and Y, the uncertainty of KS can be estimated, on the basis of the theory 
of uncertainty propagation for independent variables (Taylor, 1997; EA-4/02, 1999), as: 
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where the sensitivity coefficients of KS regarding D, Q and Y are, after deriving eq. (7): 
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Remembering eq. (4), the uncertainty of the corresponding Chézy-Manning roughness coefficient 
is: 
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1.3  Numerical example 
To show a numerical example of an individuation of the Chézy-Strickler roughness coefficient KS 
and its uncertainty, it can be considered an experimental laboratory test characterized by: 

diameter D = 50 mm = 0.050 m u(D) = 0.500 mm uR(D) = u(D)/D = 1.00% 

flow Q = 2 l/s = 0.002 m³/s u(Q) = 0.040 l/s uR(Q) = u(Q)/Q = 2.00% 

headloss Y = 0.25 m = 250 mm u(Y) = 1.000 mm uR(Y) = u(Y)/Y = 0.40% 

length L = 4 m u(L) ≅ 0 uR(L) = u(L)/L ≅ 0% 

where uR are the adimensional uncertainties. 
Complying with the previous eq. (1), eq. (3), eq. (7) the results are: 

velocity V = 1.02 m/s 

friction loss per unit of pipe length  J = 0.0625 m/m J = 6.25% 

Chézy-Strickler roughness coefficient  KS = 75.65 m⅓/s 

and the corresponding uncertainty for KS , according to eq. (8), is: 

  u(KS) = 2.53 m⅓/s uR(KS) = u(KS)/ KS = 3.34% 

It is also interesting to highlight that, according to eq. (9), eq. (10) and eq. (11) the heaviest 
contribute comes from the uncertainty of the diameter D, followed by the one of the flow Q, while 
the contribute due to is the headloss Y is the smallest. In fact such three contributes are, 
respectively: 
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It could be seen, through many others similar examples, that in general this is the kind of ranking 
that comes out of the experimental tests, according to both the usual levels of uncertainty of such 
quantities and the fact that the modules of their exponents in eq. (7) are respectively 8/3, 1 and 1/2. 
 
1.4  Adimensional approach 
The uncertainty of the Chézy-Strickler roughness coefficient can be shown in an adimensional 
form: 
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that is: 
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and, defining the corresponding adimensional uncertainties uR(Q), uR(D) and uR(Y) for Q, D and Y: 
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Besides, a second step can consist in summarizing the ratio between the adimensional uncertainties 
of KS and Q as function of both the ratio between the adimensional uncertainties of D and Q and the 
ratio between the adimensional uncertainties of Y and Q, in order to concentrate eq. (15) in one 
group of adimensional curves (Figure 2): 
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Figure 2 – The group of curves representing eq. (16) in a logarithmic plan. 

 
1.5  Individuation of the pipe conveyance capacity and of its uncertainty 
Starting from the Chézy-Strickler friction formula written as: 

2/13/83/52/13/83/5 )/(25.025.0 LYDKJDKQ SS ⋅⋅⋅π⋅=⋅⋅⋅π⋅=  (17) 

it can be derived, following the same procedure of above: 
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that can be concentrated) in one group of adimensional curves (Figure 3): 
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It’s easy to see that the group of adimensional curves reported in Figure 3 has, exactly, the same 
shape of the group of adimensional curves reported in Figure 3, because eq. (19) has the same 
structure and the same numerical coefficients of eq. (16). 
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Figure 3 – The group of curves representing eq. (19) in a logarithmic plan. 

 
2   COLEBROOK-WHITE FRICTION FORMULA 

 
2.1  Generalities 
The technical evolution has progressively increased the importance, in real practical applications, of 
smoother and smoother pipes and viscous liquids (i.e. oil), that make the flow regime drop into the 
zone of critical transition. In such conditions, the relationships among the geometric, kinematic and 
dissipative variables cannot be simply traced back to the Darcy formula given by eq. (6), but the 
adimensional friction number λ depends on both the pipe roughness and the Reynolds number Re. 
Usually, the friction formula applied for these conditions is the Colebrook-White one (Colebrook 
and White, 1937a and 1937b; Colebrook, 1939): 

⎟
⎠

⎞
⎜
⎝

⎛ ε
⋅+

λ⋅
⋅−=

λ DRe 71.3
151.2Log21

10  (20) 

where the adimensional friction number λ still represents the adimensional friction number of the 
Darcy-Weisbach eq. (6). 
From now on, the uncertainties of the acceleration due to gravity g and the kinematic viscosity of 
the liquid ν will be neglected, under the condition that they are accurately evaluated. 
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The acceleration due to gravity g can be estimated through formulas that keeps into account the 
latitude φ (°) and the altitude h (m above sea level), like the following one, which is conventionally 
prescribed by law for the Italian territory (Decreto 19 maggio 1999): 

g = 9.780318·[1 + 0.0053024·sen2φ – 0.0000058·sen2(2·φ)] – 0.000003085·h    (m/s2) (21) 

where the range of variation is lower than 1‰. 
About the kinematic viscosity of the liquid ν, it must be remarked that to reach a negligible level of 
uncertainty in its evaluation the dependence on temperature T (°C) (Streeter, Wylie, Bedford, 1998) 
is absolutely essential (Figure 4). It can be expressed for example like (Citrini and Noseda, 1987): 
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)00022.00337.01(10773.1
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Figure 4 – Kinematic viscosity ν versus temperature T for pure water. 

 
2.2  Individuation of the Colebrook-White roughness coefficient and of its uncertainty 
Starting from eq. (21), the Colebrook-White roughness coefficient ε can be drawn as: 
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Remembering eq. (1), eq. (3) and eq. (6) and the definitions of kinematic viscosity and Reynolds 
adimensional number, the following expressions can be written: 
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Hence eq. (23) becomes: 
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Under the hypothesis that L, g and ν give uncertainty contributes which are negligible (see above) 
in comparison with the ones coming from D, Q and Y, the uncertainty of ε can be estimated as: 
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where the sensitivity coefficients of ε regarding D, Q and Y are, after deriving eq. (23'): 
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2.3  Numerical example 
To show a numerical example of an individuation of the Colebrook-White roughness coefficient ε 
and its uncertainty, it can be considered an experimental laboratory test characterized by the same 
data already exploited for the previous example on the Chézy-Strickler roughness coefficient KS . 
Complying with the previous eq. (23'), it comes that: 

Colebrook-White roughness coefficient  ε = 1.59 mm 

and the corresponding uncertainty for ε, according to eq. (26), is: 

  u(ε) = 0.26 m⅓/s uR(ε) = u(ε)/ε = 16.4% 

Again, it is also interesting to highlight that, according to eq. (27), eq. (28) and eq. (29) the heaviest 
contribute comes from the uncertainty of the diameter D, followed by the one of the flow Q, while 
the contribute due to is the headloss Y is the smallest. In fact such three contributes are, 
respectively: 

=⋅
∂

ε∂ )(Du
D

 0.209 mm          =⋅
∂

ε∂ )(Qu
Q

 – 0.154 mm          =⋅
∂

ε∂ )(Yu
Y

 0.015 mm 

It could be seen, through many others similar examples, that in general this is the kind of ranking 
that comes out of the experimental tests, according to both the usual levels of uncertainty of such 
quantities and the fact that the structure of eq. (20). 
More, the ratios among these contributes are extremely close to the corresponding ones for the case 
of the Chézy-Strickler roughness coefficient KS  (since the respective contributes were – 2.02 m⅓/s 
for D, 1.51 m⅓/s for Q and – 0.15 m⅓/s for the headloss Y). In particular, the sign of each contribute 
is exactly the opposite, because KS  raises and ε decreases when roughness decreases. 
Nevertheless, the adimensional uncertainty uR(ε) appears bigger than the corresponding uR(ε), 
which was equal to for the Chézy-Strickler roughness coefficient KS . 
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Finally, remembering eq. (5): 

 Re* = 139 > 70 

Therefore the previous use of the Chézy-Strickler friction formula was allowable to this case study.  
 
2.4  Adimensional approach 
Starting from the Colebrook-White friction formula given by eq. (20) and eq. (23), an adimensional 
form of the Colebrook-White roughness coefficient ε can be defined as KCW = ε/D: 
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The uncertainty of KCW is: 
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where the sensitivity coefficients of KCW regarding Re and λ are, after deriving eq. (23"): 
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Again remembering eq. (1), eq. (3), eq. (24), eq. (25) and eq. (6'), and under the hypothesis that L, g 
and ν give uncertainty contributes which are negligible in comparison with the ones coming from 
D, Q and Y, the uncertainty of Re and λ can be estimated as: 
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The sensitivity coefficients of Re regarding D and Q are, after deriving eq. (25): 
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while the sensitivity coefficients of λ regarding D, Q and Y are, after deriving eq. (6'): 

DLQ
YDg

D
λ

⋅=
⋅

⋅⋅⋅π⋅
=

∂
λ∂ 5)4/(10

2

42
 (37) 

QLQ
YDg

Q
λ

⋅−=
⋅

⋅⋅⋅π⋅
−=

∂
λ∂ 2)4/(4

3

52
 (38) 
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YLQ
Dg

Y
λ

=
⋅

⋅⋅π⋅
=

∂
λ∂

2

52)4/(2  (39) 

Finally, the uncertainty of ε = D ·KCW can be drawn as: 

)()()( 2
2

2
2

CW
CW

Ku
K

Du
D

u ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

ε∂
+⋅⎟

⎠
⎞

⎜
⎝
⎛

∂
ε∂

=ε  (40) 

where the sensitivity coefficients of ε regarding D and KCW are, simply: 

CWK
D

=
∂

ε∂  (41) 

D
KCW

=
∂

ε∂  (42) 

 
2.5  Individuation of the pipe conveyance capacity and of its uncertainty 
Again starting from the Colebrook-White friction formula given by eq. (20), an auxiliary variable ξ 
can be defined as: 

L
YgDJgD

V
JDgDVRe

⋅ν
⋅⋅⋅

=
ν

⋅⋅⋅
=

⋅⋅⋅
⋅

ν
⋅

=λ⋅=ξ
2/32/3

2
222  (43) 

that doesn’t imply any dependence on velocity V and, therefore, on flow Q. 
Hence, the Colebrook-White friction formula given by eq. (20) becomes, still considering the 
adimensional rate KCW = ε/D instead of the Colebrook-White roughness coefficient ε: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

ξ
⋅−=

λ 71.3
51.2Log21

10
CWK  (20') 

that is: 
2

10 71.3
51.2Log2

−

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

ξ
⋅−=λ CWK  (20") 

The uncertainty of λ is: 

)()()( 2
2

2
2

CW
CW

Ku
K

uu ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

λ∂
+ξ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ξ∂
λ∂

=λ  (44) 

where the sensitivity coefficients of λ regarding ξ and KCW are, after deriving eq. (44): 
3

10

1

102 71.3
51.2Log2

71.3
51.2)(Log51.24

−−

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

ξ
⋅−⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

ξ
⋅⋅

ξ
⋅

−=
ξ∂
λ∂ CWCW KKe  (45) 

3

10

1

10 71.3
51.2Log2

71.3
51.2)(Log

71.3
4

−−

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

ξ
⋅−⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

ξ
⋅⋅=

∂
λ∂ CWCW

CW

KKe
K

 (46) 

The uncertainty of ξ can be written, again under the hypothesis that L, g and ν give uncertainty 
contributes which are negligible in comparison with the ones coming from D and Y, as: 
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)()()( 2
2

2
2

Yu
Y

Du
D

u ⋅⎟
⎠
⎞

⎜
⎝
⎛

∂
ξ∂

+⋅⎟
⎠
⎞

⎜
⎝
⎛

∂
ξ∂

=ξ  (47) 

The sensitivity coefficients of ξ regarding D and Y are, after deriving eq. (43): 

DL
YgD

D
ξ

⋅=
⋅ν

⋅⋅⋅
⋅=

∂
ξ∂

2
32

2
3 2/1

 (48) 

YYL
gD

Y
ξ

⋅=
⋅⋅ν⋅

⋅
=

∂
ξ∂

2
1

2

2/3

 (49) 

Finally, from eq. (6') it can be seen that: 

L
YDg

L
YDgJDg

Q
⋅λ

⋅⋅⋅π⋅
=

⋅λ
⋅⋅⋅π⋅

=
λ

⋅⋅⋅π⋅
=

2/52/52/5 )4/(2)4/(2)4/(2
 (50) 

and the corresponding uncertainty of Q is, under the hypothesis that L and g give uncertainty 
contributes which are negligible in comparison with the ones coming from D, Y and λ: 

)()()()( 2
2

2
2

2
2

λ⋅⎟
⎠
⎞

⎜
⎝
⎛

λ∂
∂

+⋅⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+⋅⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

= uQYu
Y
QDu

D
QQu  (51) 

where the sensitivity coefficients of Q regarding D, Y and λ are, after deriving eq. (50): 

D
Q

L
YDg

D
Q

⋅=
⋅λ⋅

⋅⋅⋅π⋅
=

∂
∂

2
5

2
)4/(5 2/3

 (52) 

Y
Q

YL
Dg

Y
Q

⋅=
⋅⋅λ⋅

⋅⋅π
=

∂
∂

2
1

2
)4/( 2/5

 (53) 

λ
⋅−=

⋅λ⋅
⋅⋅⋅π

−=
λ∂

∂ Q
L

YDgQ
2
1

2
)4/(

2/3

2/5

 (54) 

 
3   CONCLUSIONS 

 
The paper shows how the EA-4/02 could be applied to estimate the uncertainty of the experimental 
measurements of the Chézy-Strickler-Manning and Colebrook-White roughness coefficients in 
circular pipes. Of course, such coefficients are obtained through the measurements of diameter size, 
discharge and headloss for the pipes which are experimentally tested in laboratory, solving the 
above mentioned Chézy-Strickler-Manning or Colebrook-White equations respect to its own 
corresponding roughness coefficient. In few words, the uncertainty of the roughness coefficients 
looks mainly affected by their sensitivity to the uncertainty of diameter, while the uncertainty of 
discharge is slightly less important, and the uncertainty of headloss become easily negligible on 
condition that the pipe trunk between the pressure gauges is long enough. The relationships among 
those uncertainties can be summarized by adimensional relationships, that can be a useful support 
for designing the experimental tests, in order to allow them to achieve the expected level of 
uncertainty for the roughness coefficients. In the particular case of the Chézy-Strickler-Manning, 
those uncertainties can be summarized also graphically by adimensional curves. 
More, the paper investigates also the effects of the uncertainty of the Chézy-Strickler-Manning and 
Colebrook-White coefficients on the uncertainty of the flow conveyance of circular pipes, 
comparing it with the other contributing factors due to the uncertainty of, respectively, diameter 
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size and available head. Also to this aim, an adimensional approach is described to evaluate the 
weight of their different contributions of uncertainty on the uncertainty of the pipe flow 
conveyance. 
 

NOMENCLATURE 
 
A cross section area (m²) 
D diameter (m) 
g acceleration due to gravity (m/s²) 
h altitude (m above sea level) 
J friction loss per unit of pipe length (m/m) 
KCW ε/D (-) 
KS Chezy-Strickler roughness coefficient (m⅓/s) 
L pipe length (m) 
Q flow (m³/s) 
Re Reynolds number (-) 
u(…) uncertainty (…) 
uR(…) adimensional uncertainty (-) 
T temperature (°C) 
V mean velocity (m/s) 
Y headloss (m) 
ε Colebrook-White roughness coefficient (m) 
φ latitude (°) 
λ adimensional friction number (-) 
µ dynamic viscosity (kg/m/s) 
ν kinematic viscosity (m²/s) 
ξ Re·√λ (-) 
ρ density (kg/m³) 
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