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ABSTRACT 
 

In order to determine the flow rate through a pipe with the acoustic transit time method, integration 
of the measured mean projected velocities on the acoustic paths is needed. Adaptive integration methods 
may increase considerably accuracy of the integrated flow rate. Since velocity can be mapped onto 
discharge with an integral operator, the discrete output of an ADM (Acoustic Discharge Measurement) 
must be integrated numerically. One common method to do this for pipe flows is called OWICS method. 
OWICS uses a fixed parameter to describe the flow field, which might not be best for any flow situation. 
Thus, this paper introduces a dynamic OWICS method, which adaptively determines the flow parameter 
needed for integration. The presented examples show that discharge calculation can be improved with an 
adaptive scheme by one fifth up to one half. However, the magnitude of improvement depends strongly on 
how the velocity profile is disturbed. The adaptive scheme can handle disturbances, which are somewhat 
symmetric about the center axis, more reliable than ones that are asymmetric. For realistic applications of 
an adaptive scheme, a supervisory block is therefore mandatory. Some cases show a degradation of 
accuracy compared to standard OWICS, which is due to the amount of information gained from the number 
of acoustic paths of the ADM. For example, a four path ADM can yield four different velocities, which is a 
minimum of information to improve performance. 
 
1  GAUSSIAN QUADRATURE 
 

A quadrature rule is also known as numerical integration. Quadrature is often used, if the 
evaluation of the integral cannot be expressed in terms of standard functions. A famous case would be 

2xe− which is part of a Gaussian distribution. Quadrature can also be used for the integration of discrete 
data, which is the case for ADM. 
 

There are two different types of quadrature to distinguish from. That is, Newton-Cotes quadrature 
and Gaussian quadrature. For Newton-Cotes quadrature, the ab-scissas zi are fixed. Usually they are 
uniformly spaced. For Gaussian quadrature, additional degrees of freedom are introduced by choosing 
optimal abscissas zi, such that the quadrature rule will result in the highest possible precision. 

 

A Gaussian quadrature rule is an approximation to the general integral ∫ ω
b

a
dx)x()x(f  where 

f(x) is some function and w(x) is termed the weight function. For the above mentioned famous case, the 

weight function would be w(x) = 
2xe− . Of course, the weight function may be any function suited to a 

particular problem, provided it corresponds to a family of orthogonal polynomials. Hence, if f(x) is a 
polynomial of degree less or equal to 2N−1, where N is the number of points used for the quadrature rule, 
Gaussian quadrature will perform exact integration due to the additional degrees of freedom. 
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1.1 Developing a Gaussian Quadrature Rule for ADM 
 

A Gaussian quadrature rule is a weighted sum of function values, which need to be integrated. In 
order to determine the flow rate for an ADM, the area flow function need to be integrated. The following 
derivations are based on the OWICS method which is associated with the weight function w(x) = (1− x2)k. 
The family of orthogonal polynomials correlated to that weight function are called Jacobi polynomials. In 
terms of the quadrature rule, the weighted sum can be written as follows:  

( )
N

1i
iiADM zFQ

=
∑ω=      ………..(1) 

where QADM is the volumetric flow rate calculated by the ADM in m3s−1, wi are the 
dimensionless weights according to the Gaussian quadrature rule, zi are the abscissas according to the 
Gaussian quadrature rule in m and F(z) is the area flow function associated with m2s−1. For a conduit with 
circular cross section, the area flow function takes the form 
 

( ) ( )iax
2
i

2
i zvzR2zF

−

−=      ………..(2) 
 

The radius of the conduit is denoted by R with units m and ¯vax(zi) = ¯vaxi is the mean axial 
velocity at the acoustic path position zi, which is the output of a N-path ADM (i = 1, 2, . . . ,N), in ms−1. 
Substituting Eq. (2) into Eq. (1) yields a Gaussian quadrature rule for ADM discharge calculation 

( )i

N

1i
ax

2
i

2
iADM zvzRR2Q ∑

=

−ω=     ………...(3)  

A complete derivation of Eq. (2) and Eq. (3) can be found in [8] and may be requested from one of 
the authors. Previous IGHEM contributions that also handle some of the content in this paper are [5] and 
[6]. 
 
1.2  Determination of the weights and Abscissas for a Gaussian Quadrature Rule 
 

Basically there are two ways to determine the weights and abscissas for a Gaussian 
quadrature rule. One method uses the principle of undetermined coefficients, while the other, 
rather elegant method, uses the theory of orthogonal polynomials. As the method of undetermined 
coefficients will lead to a system of equations that can be used later on, both methods will be 
considered in this section. 
 
1.2.1  Method of Undetermined Coefficients 
 

The goal of a quadrature rule is to approximate the general integral ( ) ( )∫ ω
b

a

dxxxf  with a 

weighted sum of the form ( )∑ =
ω

N

1i i
'
i ,x i.e.,  

 

( ) ( ) ( )∫ ∑−
=

ω≈ω
1

1

N

1i
i

'
i xfdxxxf     (4) 

 
For simpler handling, the interval [a, b] is transformed into the symmetric interval [−1, 1]. The 
special benefit of a Gaussian quadrature rule is that if f(x) is a polynomial of degree less or equal 
to 2N −1, the weighted sum on the right side of Eq. (4) will be exactly equal  to the integral. In 
order to determine the 2N unknowns, i.e., N weights '

iω and N abscissas xi, the function f(x) shall 
be a polynomial of a simple form. Thus, let 

 
f(x) ≡ xk,        (5) 

where k may be some integer greater or equal zero. Thus, Eq. (4) may be reformulated as follows 
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     (6) 
 

Eq. (6) is a system of k non-linear equations for all k > 1. Since Gaussian quadrature is of 
precision 2N −1, it follows that k must be between 0 ≤ k ≤_2N −1. This will yield 2N equations which can 
be solved for the 2N unknowns. After the solution has been found, the weights wi must be calculated 
according to the relation 

 

        (7) 
 

The down part of this approach is that it will always yield a system of non-linear equations for 
k>1, that will be ill-conditioned in general. 
 
1.2.2 Orthogonal Polynomials 
 

The inner product of two polynomials, iφ and iφ , is defined by the operator 
 

   (8) 
It plays the central part for the calculation of the weights and abscissas with the theory of 

orthogonal polynomials. 
 

A family of N + 1 polynomials iφ for i = 0, 1, . . . ,N is said to be orthogonal if 
 

     (9) 
Then, the roots of _N are the abscissas xi, refer to § 6.6 of [1]. If the abscissas are determined, the 

weights can be calculated with 
 

      (10) 
 
The function `i(x) is the i-th Lagrange polynomial defined by 
 

     (11) 
 
Thus, the abscissas xi need to be known first in order to calculate the weights. Orthogonal polynomials 
satisfy a three term recurrence relation, that is, 
 

    (12) 
with 0φ (x) = 1 and 1−φ (x) = 0. To find the abscissas xi, one need to find the roots of φ N. The Stieltjes 
algorithm can be used to calculate the orthogonal polynomial in an iterative manner up to the desired 
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degree. The algorithm relates the recurrence coefficients k and k of Eq. (12) to the inner product, defined in 
Eq. (8) [2]. They can be calculated with the following equations 
 

      (13) 

     (14) 
 
Where ( )000 ,φφ=β   
 

A nice derivation of Eq. (12) may be found in [4] (although in a slightly different form). A proof 
for the above may be found in § 6.6 of [1]. A proof that the roots of Nφ  are all real, simple and in the 
interval [a, b] may also be found in [1]. A list of common families of orthogonal polynomials and their 
corresponding weight function can be found in Table 6.4 of [1]. 
 
1.3  Example 
 
The following example will show the advantages of a Gaussian quadrature rule applied to an ADM 
problem. The domain is a circular pipe with a diameter of D = 1 m. The ADM installation will consist of 
four paths, i.e., N = 4. In order to demonstrate the ability of a Gaussian quadrature rule to integrate without 
error, the disturbance function applied to the velocity profile must be a polynomial of degree less or equal 
to 2N −1. Figure 1 shows three OWICS based velocity profiles with different degrees of disturbance. Note 
that these disturbances may not be realistic but the example shall show that the mathematics hold, even for 
strong amplitudes. The exact discharge is calculated according to 
 

       (15) 
 
Table 1 Summary of calculated discharges according to Eq. (3) and Eq. (15) 

 
 

The discharge according to the ADM is calculated with Eq. (3) for a four path OWICS system. 
The error between the two discharges is expressed with the following relation  

 

     (16) 
The results are summarized in Table 1. Note that the numerical integration with Eq. (3) introduces 

a large error for the case in Figure 1(c). Since N = 4, Gaussian quadrature is only exact up to polynomials 
with degree less or equal to seven. The polynomial disturbance in that case is of degree eight, hence, if a 
five path ADM (N = 5) would be used, exact integration for that case would be possible with a resulting 
error of = 8.1991 × 10-8 %. The remaining small error is due to finite precision of the numerical 
calculations. 
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Figure 1 OWICS velocity profiles with different polynomial disturbances. The disturbance in column (a) is 
unity. In column (b), the disturbance function is a polynomial of degree 4 < 2N − 1. The disturbance in 
column (c) is a polynomial of degree 8 > 2N −1. The 2D plots illustrate the velocity profile at z = 0. 
 
2  ADAPTIVE OWICS SCHEME FOR DISCHARGE CALCULATION 
 

The fundamental part of the OWICS method, which also links the weight function of the Gaussian 
quadrature rule to the OWICS method, is the model of the velocity profile. It can be written in polar 
coordinates as follows 

      (17) 
Standard OWICS uses a fixed exponent  = 0.6, which is part of the weight function. This 

exponent defines, together with the number of acoustic paths N, the weights and abscissas that are needed 
to apply Eq. (3). Tabulated values for wi and |zi| according to  can be found in Table 2.4 of [6]1. The 
exponent  is directly linked with the exponent ζ of the velocity profile, i.e., 

         (18) 
for a circular conduit. Since ζ describes the curvature of the velocity profile, it follows that if k is held 
constant, ζ must be constant too. This is a heavy restriction, as one velocity profile might be well suited for 
a particular flow situation, it may not be best suited for another flow situation. The idea of an adaptive 
scheme is to calculate ζ according to the measurement data provided by the ADM installation. This 
involves least squares regression with a fit model of the form of Eq. (17). 
 
2.1  Linear Least Squares 
 

As mentioned above, the fit model is of the same form as the velocity profile. Thus let 

        (19) 
be the model velocity profile, where _ (defines the maximum velocity of the distribution) and ζ (defines 
curvature of velocity profile) are the fit parameters to be determined. The variable q is the dimensionless 
path position, which is equivalent to z/R. Such a fit model is of non-linear nature but it can be linearized by 
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taking the natural logarithm on both sides of Eq. (19). Using least squares theory, the following linear 
system of equations need to be solved, in order to determine the fit parameters, where x = [ln(α) ζ ]T. 
 

 (20) 
 

The value pairs ( iaxi q,ν ) are the mean axial velocity, ,axiν of the ADM at the dimensionless 
path position, qi = zi/R, respectively. 
 
2.2  Adaptive Schemes 
 

In this section, two adaptive schemes based on the OWICS idea are suggested to optimize 
discharge calculation in circular conduits. 

 
2.2.1  Scheme Based on Weight Correction 
 

This scheme uses the idea of corrected weights presented by Voser in [7]. However, the procedure 
to calculate the corrected weights will differ from [7]. Since the path positions stay unchanged, the 
abscissas zi = Rxi are known. Therefore, Eq. (6) can be used to solve for the corrected weights according to 
N paths. Since the abscissas2 xi are known, the originally non-linear system of equations turns into a linear 
system 
   Aw' = b       (21) 
which can be solved for w' with common algorithms, such as Gaussian Elimination. The adaptive 
information, from the solution of the least squares problem, is contained in the weight function w(x) = 
(1−x2)k of Eq. (6). That is, ζ only is needed for the weight correction scheme. The integral term on the left 
side of Eq. (6) can be expressed in an algebraic form with the Gamma function Γ  
 

  (22) 
 

Tabulated values of the Gamma function can be found in Appendix A. With the help of this relation, the 
linear system in Eq. (21) can be conveniently set up by 

       (23) 
 

     (24) 
 
where aji are the elements of A, bj are the elements of b and i, j = 1, 2, . . .N. Once the solution to the linear 
system, w', has been found, Eq. (7) must be applied element wise to get the actual weights w. The 
optimized discharge can then be calculated with Eq. (3) with the use of the corrected weights. 
 
2.2.2  Scheme Based on Re-calculation of Weights and Abscissas 
 

This scheme is not based on weight correction, but the re-calculation of both, the weights and 
abscissas. The re-calculation is due because the fitted value k = ζ  + 1/2 might differ from standard 
OWICS, where k = 0.6. Thus, the theory in § 1.2.2 need to be applied. A very effective and stable 
numerical algorithm to calculate Gaussian quadrature rules is called the Golub-Welsch algorithm [3]. A 
Matlab code of the algorithm can be found in Appendix B. Once the weights and abscissas are re-
calculated, the mean velocities axiv  from the ADM must be re-calculated as well. Since the abscissas xi 
will no longer be the same as before, the path positions will also differ and hence, different mean axial 
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velocities will result. To get over this problem, the velocity fit model of Eq. (19) with the calculated fit 
parameters can be used. The new mean velocities can then be calculated according to 
 
 

   (25) 
 
Once all the re-calculations are done, the optimized discharge can be calculated with Eq. (3) and the newly 
determined values for wi, zi = Rxi and axiv  

 
2.2.3  Procedure Summary 
 

The following is a summary of the presented schemes above 
 
Weight correction 
 

New weights and abscissas 
 

1. Perform least squares regression by solving Eq. 
(20). 

1. Perform least squares regression by solving Eq. 
(20). 

Set up Eq. (21) by using Eq. (23) and Eq. (24) with 
the previously determined fit paramater ζ from 
least squares regression. Apply Eq. (7) 
thereafter.  

Determine the weights and abscissas according to § 
1.2.2 with the previously determined fit parameter 
ζ from least squares regression, e.g., by using the 
Golub-Welsch algorithm. Depending on the 
algorithm used, the actual weights might be 
calculated with Eq. (7). 

Determine the discharge with Eq. (3), using the 
corrected weights wi and the unchanged abscissas zi 
= Rxi as well as axiv  

Re-calculate the mean axial velocities by using the 
fit model of Eq. (19) with the previously determined 

fit parameters α  and ζ  where )x(vv iaxi

∧

=   
 Determine the discharge with Eq. (3), using the all 

new values wi, zi = Rxi and axiv  
 
2.3  Examples 
 
2.3.1  Review of Example 1.3(c) 
 

Refer back to the example (c) in Figure 1 on page 5. In this example, the adaptive schemes shall be 
applied and contrasted to the standard OWICS method as it was used in that previous example. 
 

To get started, the linear system in Eq. (20) will be solved first in order to get the fit parameters α  
and ζ from the data provided by the ADM installation. By doing so, linear regression suggests ζ = 0.9813 
ms-1 and ζ = 0.0218. This yields k = 0.5218, which is different from standard OWICS, but closer to the 
Gauss-Jacobi method3. Continuing from § 2.2.3, the resulting adaptive discharges can be calculated and are 
summarized in Table 2. 
 

Note that the linear regression suggests k = 0.5218, which is less than that of standard OWICS. 
Using this information, gathered from this particular flow situation, the adaptive schemes perform more 
accurate compared to standard OWICS. Also, it is interesting that both adaptive schemes perfom equally. 
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Table 2 The table shows a summary of calculated discharges of Figure 1(c) in § 1.3. The discharges in rows 
two and three are calculated with the adaptive schemes discussed in § 2.2.1 and § 2.2.2, respectively. Note 
that they suggest k = 0.5218, which is less than standard OWICS, to yield a more accurate result compared 
to the standard method. Also note that both adaptive methods perform equal. 

 
 
2.3.2  Discharge Calculation Applied to CFD Simulation 
 

The previous examples all featured deterministic velocity profiles. That is, they are described by 
Eq. (17) and a polynomial disturbance f(x). Thus, they are rotationally symmetric and share the same body 
structure of Eq. (17). In general, there is no such ideal and symmetric velocity profile, hence, ADM 
discharge calculation is applied to a CFD simulation in this last example, to examine the more general case. 
The domain of cal- 

 
Figure 2 Domain of calculation for the CFD based example. The discharge is calculated 

at the indicated position of the acoustic paths of the ADM. 
 
culation for this example is illustrated in Figure 2. It basically is a pipe flow with two bends in the same 
plane. The acoustics paths of the ADM are also shown. The two bends induce disturbances into the velocity 
profile, which is shown in Figure 3. The results are summarized in Table 3. 

 
Figure 3 Velocity profile calculated with a CFD code at the intersection of the acoustic 

paths, shown in Figure 2. 
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Table 3 Summarized results of the discharge calculations based on a CFD simulation 

 
 
3  CONCLUSION 
 

The previous examples have shown that a fixed k is not necessarily best suited for all flow 
situations. However, the standard OWICS method is optimized for use with a constant k = 0.6 (applies to 
pipe flows only), which yields approximate results for the discharge in the system. With the use of an 
adaptive scheme, as discussed in the previous sections, the accuracy of the discharge calculation can be 
improved further. The underlying velocity model of both, standard OWICS and the adaptive schemes, is 
given by Eq. (17). Since this velocity distribution is not a function of time, nor of the coordinate of main 
flow direction, it describes steady and fully developed flow, respectively. Hence, if an adaptive scheme is 
used with an ADM installation, where steady and fully developed flow along the pipe axis is given, the 
calculated discharge with the adaptive scheme will yield more accurate or equal results compared to 
standard OWICS. This may be the case for measurements in a straight pipe with a long enough inlet zone.  
 

Due to limited space in practice, it is more common to install the transducers somewhere in the 
system, where the velocity profile is disturbed by bends in the main flow direction or other components 
such as fences or valves. For a standard four path installation (one cross plane) or an eight path installation 
(two cross planes intersecting at an angle to eliminate cross flow phenomena), a total of four data points are 
provided by the ADM for each cross plane. This velocity information is used in the adaptive schemes to 
calculate k from a two degree of freedom fit model. Since a least squares regression must be over-
determined, three data points are required for a 2DOF fit model. Since a four path installation provides four 
data points, it is only one extra data pair available. This can be a limitation for heavily disturbed velocity 
profiles, meaning that the calculated _ from an adaptive scheme with four acoustic paths may yield worse 
results in terms of discharge as standard OWICS. Investigation showed that the adaptive scheme works 
more reliable on disturbances with somewhat symmetric character. For example, refer to Figure 3 on page 
10. The velocity profile shown has a comparable symmetry about the center axis if contrasted to Figure 
1(c), which is perfectly symmetric. Heavily disturbed velocity profiles with asymmetric characteristics may 
not yield an improved result compared to standard OWICS. This is due to the minimalistic velocity 
information used for least squares regression. Thus, further research is directed toward the improvement of 
performance of the fit model given in Eq. (19) and a supervision algorithm which controls the adaptive 
process. 
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A. Gamma Function  
 
The Gamma function is defined by 
 

     (26) 
 
The following relations may be used to compute values for ϕ  < 1 ( ≠ϕ  0,−1,−2, . . . ) and ϕ  > 2 
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B. The Golub-Welsch Algorithm  
 
The following algorithm is called the Golub-Welsch algorithm according to [3]. The syntax of the code is 
Matlab R2009a. The arguments are N, k and µ0, where µ0 = G0(k). Note that the weights returned are 
actually '

iω , therefore, Eq. (7) must be applied thereafter. 
 

 
 
 
 




