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Abstract 
 

One of the main issues of the acoustic discharge measurement (ADM) is related to the accuracy of the 
method. The accuracy of the measurements depends on many factors such as the flow situation on site, the 
local geometry, care devoted to the transducer installation, the electronic devices and also the algorithms 
applied to evaluate discharge. The robustness of the ADM may also depend on water quality and the size of 
the measuring section. To estimate the overall accuracy of a measurement, individual sources of errors have 
to be analysed separately.  
Important sources of errors arise from flow field distortions which accordingly might demand a higher 
number of acoustic paths to achieve the desired measuring accuracy. Further sources lie in the installation, 
the out-of-roundness and deformation of pipes, in cross section and eventually free surface measurement, the 
employed integration method and also in the protrusion effect of the acoustic transducers within the flow. 
According to the appendix of the IEC 60041standard the volume flux Q in a conduit can be determined by 
integrating individual path readings applying a simplified Gauss-Jacobi integration method, where the 
individual path readings are weighted and added up. 
One of limitations of this method described in IEC 60041 is that deviations of the integrated discharge from 
a true discharge value are observed even when ideal velocity distributions are calculated with theoretical 
equations for turbulent velocity profiles. Since velocity profiles vary as a function of Reynolds number and 
wall roughness, these deviations are determined by these parameters. The deviations are inherent to the 
method proposed in IEC 60041 as an assumed uniform velocity profile is used for individual weight 
calculations. 
A further limitation of the method is the fixed weighting of the path velocities and thus the need for very 
accurate positioning of the acoustic transducers with respect to the prescribed distances di of the acoustic 
paths to the pipe centre. 
To overcome these limitations Voser [1999] proposes a modified integration method with slightly modified 
optimum sensor positions and weighting coefficients, thus reducing the integration error by 0.1 up to 0.2 
percent. Furthermore, he includes in his method the actual, measured path positions for determination of the 
weighting coefficients and hereby eliminates the positioning error. He names this method OWICS (Optimal 
Weighted Integration for Circular Sections). This new method is based on the generalized Gauss-Jacobi 
method, abandoning the idea of a uniform velocity distribution. Coefficients are optimized on the assumption 
of turbulent velocity profiles, thus adapting the method better to the physical process. 
In this paper the background of the integration methods is explained in detail, and advantages of the OWICS 
integration method are pointed out and demonstrated for selected examples. Quantitative data showing 
integration uncertainty as a function of the number of paths for ideal and disturbed velocity distributions is 
provided.  
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1. Multipath Acoustic Discharge Measurement 
 
The multipath acoustic discharge measurement (ADM) is a well established method for accurate discharge 
measurement, especially for large closed conduits and rectangular channels.  

 
Fig. 1.1: Measurement section of an 8 path and two planes ADM 

 
Figure 1 shows a typical 4-path, two-plane application for a closed conduit. The two planes allow 
compensation of cross flows effects in the measurement section. The resulting flow rate Q is given by Q=     
(QA + QB)/2. 
Averaged velocities are measured on each of the acoustic paths. These path velocities are influenced by local 
flow disturbances and possible cross flow in the measuring section. The volume flux in the entire cross 
section is estimated by averaging and weighting the individual path readings. The accuracy of the method 
increases with larger pipe diameters and higher velocities 
The following sections discuss variations in accuracy of different integration methods depending on the 
number of paths assumed for the cases of ideal and disturbed velocity distributions. Further focus lies on the 
influence of inaccuracies of sensor positions and on ways to eliminate these negative influences on volume 
flux determination.  

2. The area flow function 
 
The basic idea of volume flux integration is to reconstruct in a first step the velocity distribution in the flow 
cross section on the basis of the measured, local velocities in one acoustic plane, as e.g. the path averaged 
velocities v1,…v4 in  the arrangement of Figure 1.1  
In a second step the distribution is integrated. Numerically the flow rate Q can be approximated by summing 
up the partial flow rates iQ∆  for each horizontal strip, as displayed in Figure 2.1. 
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The area flow function F(z) describes the distribution of the partial flow rates on the strips and is expressed 
by 
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Therefore, the area flow function at a given position di  can be written as 

iii lvdF ⋅=)( .           (2.3) 
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The measured path velocities vi can be projected on the y-z-plane (Fig. 2.2) 

)sin()( ϕ⋅⋅= iii LvdF          (2.4) 
Due to the finite number of measured paths it is not possible to calculate the sum of the right hand side of the 
equation (2.2). For this reason the integral (2.2) is approximated by a finite sum using weighting factors 
w1,…wN . 
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where C denotes a constant. In the following section the theoretical background for determination of the 
weighting factors is deduced.  
 

3. Gaussian Quadrature 
 
3.1 General Theory  
Numerical quadrature is the numerical calculation of the area below a curve using interpolating polynomials. 
This corresponds to a numerical integration to calculate a definite integral (from a to b) of a function f(x) 

∫=
b

a

dxxfI )(      (3.1) 

The integral I is approximated by a finite number N of known 
values of f(x) at the known abscissas x1, x2, … , xN. The 
weights w1, w2,… , wN are chosen such that 
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Equation (3.2) is called N-point quadrature. For illustration the 
simple example of the trapezoidal rule is to be explained: 
Given are 2 values f(0) and f(1) of an unknown function f(x) in 
the interval [0,1] at the abscissas x1=0 and x2=1 (Figure 3.1). 
To approximate the integral of f(x) from 0 to 1 the points f(0) 
and f(1)  are interpolated with a linear function. The area of the 
resulting trapezoid is calculated as 
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According to equation (3.2) the weights are w1=w2=1/2. Except for constant or linear functions f(x), the 
trapezoidal rule gives only an approximation of the exact integration. To minimize the error for more general 

Fig.2.2: Projection of the acoustic path on the y-z-plane 
 

Fig. 2.1: Integration by summing up the partial 
flow rates 
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Fig. 3.1: Trapezoidal rule 
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functions, better interpolations are required. For integration of quadratic functions f(x) numerically without 
error, a quadratic interpolation is required. In this case the method is called Simpson-Rule. Generally this 
class of quadrature is called Newton-Cotes Quadrature [Press95].  
To construct Newton-Cotes formulas, firstly the abscissas are chosen to calculate the weights. By choosing 
the abscissas some degrees of freedom are lost. When both the abscissas and the weights are treated as 
unknown parameters, a much better approximation to the exact result is achieved. This method is known as 
Gaussian Quadrature. The Gaussian Quadrature enables integration of cubic polynomials with only two 
function evaluations (in contrast to Simpson's Rule, which is also exact for cubic polynomials but requires 
three function evaluations). 
The (N-Point) Gaussian Quadrature provides the best numerical estimate of an integral by determining 
optimum abscissas x1, x2, … , xN , where the function f(x) is evaluated. Therefore the method gives 
 

 the optimal abscissas x1, x2, … , xN 
 and the corresponding weights w1, w2,… , wN 

 

The Gaussian Quadrature method can be extended to the numerical integration of the more general type of 
integrals 

 ∫ ⋅
b

a

dxxfxW )()(  

where W(x) is called the weighting function. The commonly used weighting functions for the ADM are   
Gauss-Legendre:  1)( =xW    )11( <<− x  

Gauss-Jacobi:  βα )1()1()( xxxW +−=  )11( <<− x  
Other weighting functions and the corresponding abscissas and roots are listed in [Press95] or [Abra64]  
 
The general formulation of the Gaussian Quadrature is: 
Find abscissas x1, x2, … , xN  and weights w1, w2,… , wN  such that the integral  
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is exact, if f(x) is a polynomial of degree less then 2N. 
 
Procedure for the Gaussian Quadrature (3.4): 
COMPUTATION OF THE ABSCISSAS: 
 
Polynomials are generated based on the recurrence 
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The abscissas x1, x2, … , xN  of the N-point numerical integration (3.4) are equal to the roots (zeros) of the 
polynomial pN(x) generated by the recurrence (3.5). 
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COMPUTATION OF THE WEIGHTS 
The weights are computed with the formula 
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where Lj(x) is the j’th Lagrange Polynomial defined as 
 

∏
≠
= −

−
=

N

jk
k kj

j
j xx

xx
xL

0

)(          (3.8) 

 
with the abscissas x1, x2, … , xN . 
 
The theory of the Gaussian Quadrature is deduced in details in [Stewart96] and [Press95]. 
 
3.2  Gauss-Legendre Quadrature (IEC 41) 
This example shows the application of the Gaussian Quadrature for the weighting function W(x)=1 as used 
for the integration in a rectangular section according to IEC 41. 
Given are:  1)( =xW , 1−=a , 1=b  and 2=N  (see equation (3.4)) 
 
To approximate the integral by  
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 the abscissas x1, x2  and the weights w1, w2 have to be determined.  
 

According to equation (3.5) the two polynomials xxp =)(1   and
3
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The abscissas 1x and 2x are the roots of )(2 xp :    
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The formula for the 2-point Gauss-Legendre-Quadrature results in 
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In the same way the abscissas and weights for the 3-point and 4-point Gauss-Legendre Quadrature are 
determined: 
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4-point: x1 = 0.861136 (w1 = 0.347855) ;  x2 = 0.339981 (w2 = 0.652145)    
  x3 = -0.339981 (w3 = 0.652145) ; x4 = -0.861136 (w4 = 0.347855) 

  
The first example was the 2-point-trapezoidal rule (3.3). Here, the approximation of the integration is exact 
only if f(x) is linear or constant; e.g. the degree of f(x) is smaller or equal to 1. With equation (3.9) the 2-
point approximation on the right hand side is equal to the integral if the degree of f(x) is smaller or equal to 3. 
 

In general: The N-point Gaussian-Quadrature is exact for polynomials f(x) with degree smaller or equal 
to 2N-1. (Newton-Cotes Quadrature: N-1) 

 
3.3 Application to ADM 
Rectangular sections:  
For application of the procedure described in the example of section 3.2 to the integration of a rectangular 
section with length B and height D the area-flow-function F(z) has to be determined. Following the same 
steps as in section 2, the values of the area-flow-function at the z-positions di of the acoustic paths are given 
by 

 BdvLdvdF iiiiii ⋅=⋅⋅= )()sin()()( ϕ    
(3.10) 
Assuming uniformly distributed velocity 
(v=constant) in the rectangular section, F(z) 
becomes a constant since B does not depend on 
z (see figure 3.2). 
Therefore the weighting function can be chosen 
as W(x)=1 (Gauss-Legendre-Quadrature).  
With the linear transformation  
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the new positions determined with equation 
(3.9) in the case of two acoustic paths are  
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The flow rate in the rectangular section can be approximated by 
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where v1 and v2 are the measured (mean) velocities at the path positions 1d  and 2d . For a 4 path configuration 
in one acoustic plane [IEC41], the equation is 
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where the positions di of the acoustic paths and the weights wi are given by 

Fig. 3.2: Projection of the acoustic path to the y-z-plane 
in a rectangular section 
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Circular sections: 

For the integration in circular sections, two methods with different assumptions are introduced. The first 
method assumes uniform velocity distribution and the second one a fully developed turbulent velocity profile 

Uniform velocity distribution: Gauss-Jacobi (IEC41) method 

The integration method according to IEC41 
assumes uniformly distributed flow (figure 3.3 
left). The area-flow-function (see chapter 2) is 
given by 

 ( )κ22)( zRCzF −⋅=  (3.13) 

with κ=0.5 and constant C . 

Turbulent flow profile: OWICS 1 method 

In the real flows, there is zero velocity at the 
wall due to friction. Figure 3.2 (right) shows a 
fully developed turbulent flow profile. The 
velocity distribution is a function of the 
Reynolds number Re and the roughness k of 
the pipe. The modified area-flow-function  

( )κ22)( zRCzF −⋅=          (3.14)  

with κ=0.6 is much better adapted to the physical process (see [Voser99]) and takes zero velocities at the 
wall into acount.  

The difference between equations (3.13) and (3.14) lies in the power κ. Both equations are based on the same 
theory. Since the flow rate Q is given by 
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the weighting function W(z) can be set equal to the area-flow-function F(z). In Abramowitz [Abra64] the 
Gaussian Quadrature with this weighting function W(z) is known as Gauss-Jacobi-Quadrature where 

( ) ( ) 1111)( <<−+−= xxxxW βα       (3.16) 

With α=β=κ  the weighting function results in 
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Equation (3.13) and (3.14) have the same structure as (3.17), as can be demonstrated by substituting x with 
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In accordance with section 3.1, the abscissas x1,..,xN (i.e. the path positions) for the N-point Gaussian-
Quadrature with the weighting function (3.17) are the roots of the polynomial pN(x) generated with the 
equation (3.5).  

 

1 OWICS:  Optimized Weighted Integration Method for Circular Sections [Voser99] 

Fig. 3.3:  Uniformly distributed flow (right) and a fully 
developed turbulent flow (left) in a circular section 
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In [Press95] a simpler method for generating the polynomial pN(x) is given by the recursion formula: 
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(κ=0.5 :   Gauss-Jacobi (IEC 41),  κ=0.6 :  OWICS) 

The polynomials of the Gauss-Jacobi (IEC41) method (κ=0.5) for the case of N=4 acoustic path in one 
acoustic plane are 
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The roots (=abscissas) of the polynomial p4(x): 309017.0,809017.0 3241 =−==−= xxxx  

In the same way the polynomials, the abscissas and the weights for the OWICS method (κ=0.6) are 
determined. 

The ideal positions d1,..,d4 (fig. 3.4)  and the weightings w1,…,w4 (equation 3.7) of the acoustic transducers 
in a circular pipe with diameter D according to IEC 41 (Gauss-Jacobi) are given by 
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The ideal positions and weights for the OWICS method: 
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The flow rate Q (see equation 2.5) can be approximated by: 
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Equations without integral [Voser99] for the calculation of the weight exist for 4 acoustic paths with the 
assumption of nonnegative di : 
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where 5133647.1,0900812.0 21 == gg for the OWICS method and 570796.1,098175.0 21 == gg  for the 
Gauss-Jacobi (IEC41) method. 

 

The abscissas di and the weights wi for the Gauss-Jacobi and the OWICS methods for N=1,2,…,9 are listed in 
the following table:  

 
 GAUSS-JACOBI (IEC 41) 

(κ =0.5) 
OWICS 
(κ =0.6) 

Number 
of Paths N 

Abscissas 
di/(D/2) 

Weights 
wi 

Abscissas  
di/(D/2) 

Weights  
wi 

1 0 1.570796 0 1.513365 
2 ±0.5 0.906899 ±0.487950 0.890785 
3 0 

±0.707106 
0.785398 
0.555360 

0 
±0.695608 

0.768693 
0.553707 

4 ±0.309017 
±0.809017 

0.597566 
0.369317 

±0.303783 
±0.799639 

0.588228 
0.371884 

5 0 
±0.500000 
±0.866025 

0.523598 
0.453449 
0.261799 

0 
±0.493266 
±0.858534 

0.515768 
0.448857 
0.265433 

6 ±0.222520  
±0.623489 
±0.900968 

0.437546 
0.350885 
0.194726 

±0.219676 
±0.616712 
±0.894939 

0.432160 
0.348913 
0.198413 

7 0 
±0.382683 
±0.707106 
±0.923879 

0.392699 
0.362806 
0.277680 
0.150279 

0 
±0.3785145 
±0.7007971  
±0.9189577 

0.388174 
0.359340 
0.277122 
0.153700 

8 ±0.173648  
±0.500000  
±0.766044 
 ±0.939692 

0.343762 
0.302299 
0.224375 
0.119387 

±0.171872 
±0.495335 
±0.760343 
±0.935614 

0.340324 
0.300163 
0.224578 
0.122463 

9 0 
±0.309017 
±0.587785 
±0.809017 
±0.951057 

0.314159 
0.292783 
0.254160 
0.184658 
0.097081 

0 
±0.306222 
±0.583053 
±0.803925 
±0.947631 

0.311216 
0.296281 
0.252911 
0.185265 
0.099815 

 

 

 

4. Gauss-Jacobi and OWICS with examples 
 

The turbulent velocity distribution depends on the Reynolds number Re and the roughness ks of the conduit 
wall. The equations required to approximate the velocity profiles base on the logarithmic laws described in 
[Schlichting96]. The chosen parameters are:  

 
 Range of Reynolds numbers (Re) :  105 … 108   [-] 
 Roughness  (ks/D)   : 10-5, 10-4 and 10-3  [m]  
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4.1 Comparison Gauss-Jacobi (IEC41) / OWICS 
IEC41 suggests using at least 4 paths for proper determination of the discharge. A comparison of the two 
methods is shown in Figure 4.1.for a 4 path ADM in one acoustic plane. 

 
 

Fig. 4.1: Error of the OWICS and Gauss-Jacobi (IEC41) method for a 4 path (one acoustic plane) ADM as a 
function of the Reynolds number and the roughness ks. 

The average of all the integration errors (figure 4.1) yields the following results: 
 

 OWICS Gauss-Jacobi (IEC41) 
Mean Error [%] 0,01 0,18 

 

Due to the assumption of a uniform velocity profile, the method based on the Gauss-Jacobi (IEC41) method 
produces a systematic error. A simpler approach is to describe the turbulent velocity profile v(r) by the 
following approximation: 
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where n is a function of the Reynolds number Re and the wall roughness k. The simulated integration errors 
on the basis of the velocity profile given with formula (4.1) are illustrated in Figure 4.2 for varying n. 
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Fig. 4.2: Error of the OWICS and Gauss-Jacobi method  

for a 4 path (one plane) ADM as a function of n. 

4.2 Influence of the number of path  
According to the theory of the Gaussian quadrature, the error should decrease when increasing the number of 
acoustic paths. This is confirmed by simulations as shown in Figure 4.3. These simulations are based again 
on the approximated velocity profile of formula (4.1) with the exponent n set to 10.   

 
Fig. 4.3: Influence of the number of path for a 4 path (one acoustic plane) ADM 

  
4.3 A disturbed velocity profile 
In a next step the influence of a disturbed velocity profile is investigated. The disturbed profile is generated 
with the formula of Salami [SAL72]: 
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where φ denotes the angle from 0 to 2π. 
The radius of the circular section is set to 1. 
Some lines of constant velocities are 
illustrated in figure 4.4. In the case of an 
asymmetric profile, the error due to 
integration depends on the installation 
angle α of the acoustic paths. 
In figure 4.5 the integration errors with the 
Gauss-Jacobi (IEC41) method and the 
OWICS method for a 4- path (in one plane) 
ADM for different angels α are plotted.  
For both methods, the angle α = 0° yields 
maximum error.  
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Fig. 4.5: Integration error for different installation angles α for 4 acoustic paths in one plane. 

By increasing the number of paths N in one acoustic plane in the case of α=0°, the error is reduced, as 
illustrated in figure 4.6. 

Fig. 4.4: Lines of constant velocities for the disturbed 
profile (4.2). 
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Fig. 4.6: Influence of the number of paths in case of a heavily disturbed profile (angle α=0) 

 
 
4.4 Influence of non-ideal path positions 
Below it is assumed that one of the acoustic paths, inner or outer, is malpositioned. If the altered weights of 
the new position is not taken into account, then the Gauss-Jacobi (IEC41) method shows errors increasing 
linearly in proportion to the degree of malpositioning (Figures 4.7 and 4.8). 
If the weights of altered positions are corrected for the Gauss-Jacobi (IEC41) and the OWICS methods, the 
error becomes smaller (modified Gauss Jacobi), and even almost zero for the OWICS method. 
 
 
 
Inner Path: 

 
Fig. 4.7: Influence of the path position of an inner path 
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Outer Path: 

 
Fig. 4.8: Influence of the path position of an outer path 

 
 
 
 
 
 

5. Conclusion 
 
In comparison to the Gauss-Jacobi (IEC41) method, the OWICS method shows the following advantages: 
 

Installation Less sensitive to malpositioning (position must be measured and 
weights are calculated using the actual path positions) 

 
Change of the integration 
method 

ADM installed on the basis of IEC41 can easily be adapted to the 
OWICS by slightly modifying the weights used for integration of 
the volume flux. 
 

Implementation Basic concepts of integration remain the same. Mathematically 
OWICS is also based on the Gauss Jacobi Quadrature method. 
Only one constant has to be modified. 

 
Process Physically correct boundary conditions are used. The assumption 

of a turbulent profile with zero velocities is better adapted to the 
physical process.  
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Due to the considerable increase of accuracy and insensitivity of the OWICS integration method to flow 
profile variation and to positioning of the transducers, the classical method described in IEC41 should be 
refined and supplemented with the elements of the OWICS method. 
 

References 
 

Abra64 
 M. Abramowitz and I. A. Stegun: Handbook of mathematical functions,  
  (Available at:  http://www.math.sfu.ca/~cbm/aands/toc.htm) 
 
IEC41 

CEI/IEC 60041: Field acceptance tests to determine the hydraulic performance of hydraulic  
turbines, Storage, pumps and pump turbines, IEC 1991 
 

Press95  
W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, Second 
edition, Cambridge University Press, 1995. (The same book exists for the Fortran language). 
(Available at http://cfata2.harvard.edu/nr/) 
 

Sal72 
L.A. Salami: Errors in the velocity-area method of measuring asymmetric flows in circular pipes,  
Modern Developments in Flow Measurement 1972. 

 
Stewart96 
 G.W. Stewart: Afternotes on Numerical Analysis, SIAM 1996 
 
Schlichting96 
 H. Schlichting, K. Gersten: Grenzschichttheorie, 9., Springer 1996 
  
Voser99 

A.Voser: Analyse und Fehleroptimierung der mehrpfadigen akustischen Durchflussmessung in  
Wasserkraftanlagen, ETH Zürich Dissertation Nr. 13102, 1999 

α 

Page 15 of 15   T. Tresch, T. Staubli, P. Gruber 


