<u>A SAMPLE OF UNCERTAINTY ANALYSIS ON FIELD</u> <u>PERFORMANCE TEST</u>

By Albert F. Mikhail, P.Eng., Ontario Power Generation IGHEM 2002 TORONTO

ABSTRACT

The field performance test results should have an uncertainty analysis to provide a band of acceptable data values. The uncertainty will consist of the systematic and random components. All the test result values will be acceptable within the uncertainty band. Unrealistic presentation of uncertainties will impact on confidence of the test results

There are subjective and objective measures of the uncertainties. The requirement of an objective measures of uncertainties are very important to establish a true value of the test data accuracy.

A subjective reasoning of uncertainties may describe the measured data as "accurate", "right on", "astonishing close", "highly accurate".

The objective uncertainty evaluation can be described as the basic concept of elemental uncertainty analysis which consist of two parts, the random uncertainties (Precision), and the systematic uncertainties (bias).

The concept of analyzing both uncertainties combined together (random and systematic) to a single number to describe measurement uncertainties which combine the effect of precision and bias.

This is an attempt to apply the IEC test code uncertainties definitions in a practical way to evaluate the field test uncertainties.

This paper will present the measurement elements of a field performance test. The Flow was measured by the Pressure Time Method using the Gibson Instrument. The head, output and wicket gate opening were measured by high accuracy instrumentation.

1. MEASUREMENT OF FLOW (GIBSON PRESSURE-TIME METHOD)

The following uncertainty analysis is prepared according to the test codes IEC - 41, and ASME PTC 18-1992

The uncertainties, both systematic and random, associated to the measurement of flow are dependent on the measurement of many parameters as described below. Table 1 presents a summary of the uncertainty values associated with the measurement flow. While, the detailed analysis of flow uncertainty is presented in Table 2.

	Description	Units
A _{GIBSON}	net area of the Gibson diagram	in^2
er	Random error	
es	Systematic error	
e	Total Uncertainty = $(e_r^2 + e_s^2)^{1/2}$	
F	pipe factor	ft^{-1}
g	gravitational acceleration	m/sec ²
K	Gibson Instrument Constant	
М	Specific gravity of mercury	lb/ft ³
P _{DIA}	Penstock Diameter	metres
P _{LG}	Distance Between Gibson Piezometer Taps	metres
Q	turbine flow	m ³ /s
QLEAKAGE	Leakage from the wicket gates	ft^3/s
R	Ratio of cross sectional area of glass tube to area of the	
	riser of Gibson Instrument	
S	Time constant of Gibson Diagram	inches

In the uncertainty analysis the following parameters are used

2. Calibration of the Gibson Instrument (K)

The Gibson Instrument was calibrated before the tests. The calibrations were carried out at our facilities to determine the Gibson Instrument Constant. The uncertainty of the Gibson instrument consists of the following elements.

3. Determination of the Acceleration due to Gravity (g)

The acceleration of gravity is calculated from the standard acceleration due to gravity and adjusted to the proper latitude and altitude. The systematic uncertainty is based on IEC code recommendations.

4. Determination of the Specific Gravity of Mercury (M)

The mercury specific gravity was measured by an independent laboratory and found to be 13.5757 lb/ft^3 at 25° C. The specific gravity was adjusted to 13.5749 lb/ft^3 at 20° C.

5. Ratio of Areas - Two Legs of the Gibson Apparatus Manometer Tubes (R)

The Gibson Apparatus is fabricated with very high precision. The Gibson instrument was calibrated immediately before the test using a micrometer and a precise pressure source.

6. Pipe Factor (F)

7. Penstock Diameter Measurement (P_{Dia.})

The penstock diameter was measured using a surveying technique with checking the upper and lower piezometer taps using a custom made micrometer. The measurement was carried out by Remote Access Technology. Analysis and computations were undertaken by Capital Projects Group Inc. (CPG Inc.)

8. Measurement of distance - Upper and Lower Gibson Piezometer Taps (PLG)

Measurement of distance between the upper and lower piezometer taps uncertainties are from the measuring Tape length uncertainty (100 ft), Thermal Expansion & Contraction, Measuring procedure

9. Leakage Past Turbine after Gate Closure (QLEAKAGE)

The uncertainty arising from determining the leakage through the wicket gates after the closure of the gates. The uncertainty is a function of the gate clearance area calculations and the coefficient of flow.

10. Setting up the Lens of the Gibson Apparatus

The setting up of the lens of the apparatus to produce a 1 to 1 ratio of object and image. The Gibson instrument is built with a very high level of precision. The lens was calibrated, following uncertainties were determined during this calibration process:

11. Time Measurement by the Suspension Rod of the Pendulum (S)

The uncertainty is determined by measuring the time lines on the diagram.

12. Determining the Gibson Diagram Area (A_{GIBSON})

The uncertainty evaluation depends on the digitizer accuracy, print correction factor and integration techniques and the operation of digitizing. The uncertainties associated with each of these factors are described below.

13. Digitizer Accuracy

Accuracy was specified by the digitizer manufacturer.

14. Print Correction

The print correction factor is determined by comparing four corners on the film to the same four points on the print.

15. Integration Techniques

Determining the area under the pressure wave diagram, the starting and diagram ending points, the harmonic effect, and the method of fitting a graph to the digitized data.

16. Digitizing Technique

The uncertainty from the actual digitizing, the number of digitized points, the selection of the location of the points, etc.

17. "Nebenbewegungen" or Conduit Friction Tolerance

Accessory motion of the water column in the penstock as per ASME Paper 58-A-78.

18. Friction in the Mercury Manometer

Mercury column friction in the manometer, as per ASME paper 58-A-78

19. Inertia of the Mercury

Mercury column inertia in the mercury manometer, as per ASME paper 58-A-78.

20. Elasticity, Water Pulsation, and Reflected Waves in the Penstock

As per ASME paper 58-A-78.

21. MEASUREMENT OF HEAD

The uncertainties, both systematic and random, associated to the measurement of head depend on the measurement of elevation and pressure as described in the following sections. The uncertainties associated with head measurements, are summarized in Tables 1, while, Tables 3 and Table 4 present a detailed computation of the uncertainty.

22. MEASUREMENT OF GENERATOR OUTPUT

The uncertainties, both systematic and random, associated to the measurement of generator output depend on the measurement of generator output, generator losses and the phase shift as summarized in Tables 1. Theses uncertainties are included in the analysis of turbine and overall unit results, Tables 5 and 6.

23. UNCERTAINTY OF TURBINE AND OVERALL UNIT RESULTS

The uncertainties associated with the test results are dependent on all parameters measured. For turbine results these include flowrate, net head, turbine power output, and wicket gate opening. Tables 5 provide a detail of the analysis of the uncertainty attributed to the turbine results. The overall unit results are dependent of the measurement of flow, gross head, generator output and wicket gate opening. Table 6 provides a detail of the analysis of the uncertainty attributed to the overall unit test results.

TABLE 1 SUMMARY OF UNCERTAINTY ANALYSIS VALUES

Ontario Power Generation Inc. Sir Adam Beck G.S. II Unit #26

DATA INPUT

		metres	88.00	Normalized Gross Head
		metres	87.80	Normalized Net Head
		m ³ /sec	102.61	Q=Average Flow near Best Efficiency
		mm	332.02	Full Servometer Stroke
		MW	84,55	Turbine Output at Best Efficiency
		MW	80.54	Unit Output at Best Efficiency
ft/sec	32,1804	m/sec2	9.808531354	Gravity
	13.5778		13583	Mercury Specific Gravity
ft	71.6862	m	21,84996595	Distance Between Upper and Lower Taps
cfs	27.7467	m ³ /sec	0.785583007	Leakage Flow
feet2	0.205	m ²	0.019045196	Total Leakage Area
in	607,113	m	15 42066462	Wicket Gate Circumference

		5)	stematic Uncertainty		Rando	om Uncertaint	У
FLOWRATE	A substantian due to Constant	0.0500	0/ +6.61+++++	-			_
1.1.1	Acceleration due to Gravity	0.0500	75 OF HOW	6			
1.1.2	Datio of Areas, Two Loss of the Cibcon Apparatus Menometer Tr	+ 0.1000	% of flow	6	+ 0.012200	e.	
1.1.5	Rabo of Areas - Two Legs of the Glosoft Apparatus Manometer Tr	0.1000	76 OF HOW	9	0.013380	70	
12.1	Penstock Livameter Measurement	0.10000	leet		0.164400	70	e
1.2.2	Lealers Dest Tudine after Cate Cleanse	+ 1.4893	inches	D	+ 0.081390	70	8
1.3	Leakage Past Turbine after Gate Closure	0.2500	incries	0	-		-
1.4	Lens of the Gibson Apparatus	+ 0.0500	76	-9		24	-
1.5	Time Measurement by the Suspension Rod of the Pendulum	+ 0.0500	%	a	+ 0.080000	%	0
1.6.1	Digitizer Accuracy	+ 0.1000	%	d			
1.6.2	Printing Correction	± 0.0500	%	0			
1.6.3	Integration Techniques	± 0.0800	%	6			_
1.6.4	Digitizing	± 0.5000	%	0	+ 0.750000	%	0
1.7	Nebenbewegungen" or Conduit Friction Tolerance	± 0.1500	%	e			_
1.8	Friction in the Mercury Manometer	+ 0.1250	%	e			
1.9	Inertia of the Mercury	± 0.0600	%	e			
1.1	Elasticity, Water Pulsation, & Reflected Waves in the Penstock	+ 0.0500	%	e			
HEAD							
2.1	Station Headwater (% of IR psi)	+ 0.100	% of 10	d	+ 10.	mm 0	0
2.2	Station Tailwater (% of IR in psi)	+ 0.100	% of 10	d	+ 10.	0 mm	0
2.3	Vertical Control Survey (mm)	+ 1.0	mm	d	+ 3.	0 mm	0
2.4	Net Head Measurement (% of IR in psi)	+ 0.050	% of 100	d	+ 25.	0 mm	0
2.5	Unit Tailwater (% if IR in psi)	± 0.100	% of 5	d	± 10.	0 mm	C
OUTPUT							
3.1	Generator Output	+ 0.050	% of measurement	d	+ 2.0	kW	0
3.2	Generator Losses Values	+ 0.100	% of measurement	d	+ 2.0	kW	c
3.3	Phase Shift	+ 0.100	% of measurement	d	+ 1.0	kW	0
3.4	Transformer Inaccuracies	+ 0.400	% of measurement	d	+ 2.0	kW	c
WICKET GAT	EOPENING						
	Wicket Gate Opening (% of IR)	± 0.050	% of 1000	d	± 0.50	mm	ç
8.	estimated	kW	- kilowatt		R	instrument	rance
	determine d		anilling store		a.c.		ange.

TABLE 2 SUMMARY OF UNCERTAINTY ANALYSIS VALUES

Ontario Power Generation Inc. Sir Adam Beck G.S. II Unit #26

FLOW UNCERTAINTY ANALYSIS

Gravity 32:18043 ft/sec2 Mercury Specific Gravity 13:57783 Average Discharge (Q) 102.6 cfs Distance Between Upper and Lower Taps 71:68624 ft Leakage Flow 27:74669 cfs

Total Leakage Area 0.205001 0.21 Wicket Gate Circumference 607 1128 in

		SYSTEMATIC UNCERTAINTY				RANDOM UNCERTANTY			
	DESCRIPTION	Unc	ertainty	es	es ²	Unc	ertainty	er	er ²
References				% of Q			1	% of Q	
1.1.1 1.1.2 1.1.3 1.2.1 1.2.2 1.3 1.4 1.5 1.6.1 1.6.2 1.6.3 1.6.4 1.7 1.8 1.0	Acceleration due to Gravity Specific Gravity of Mercury Ratio of Areas - Two Logs of the Gibson Apparatus Manometer Tubes Ponstock Diameter Measurement Length between Upper & Lower Gibson Taps Leakage Past Turbine after Gate Closure Lens of the Gibson Apparatus Time Measurement by the Suspension Rod of the Pendulum Digitzer Accuracy Printing Correction Integration Techniques Digitzing Nebenbewegungen" or Conduit Friction Tolerance Friction in the Mercury Manometer	0.05000 % 0.10000 % 0.10000 ft 1.48930 ft 0.25000 % 0.05000 %	0.10000 0.10000 m/sec m/sec 0.84792 m/sec 0.05000 m/sec 0.05000 m/sec 0.05000 m/sec 0.05000 m/sec 0.05000 m/sec 0.05000 m/sec 0.15000 m/sec 0.15000 m/sec	0.05000 0.09745 0.09745 1.80084 0.0482 0.04873 0.048745 0.0487300000000000000000000000000000000000	0.002500 0.009497 0.009497 3.243037 0.00023 0.002374 0.002374 0.002374 0.002374 0.006078 0.237423 0.0237423 0.02188 0.014839 0.014839	0.013380 % 0.164400 % 0.081390 % 0.080000 % 0.750000 %	0.01338 % 0.16440 % 0.08139 % 0.08000 % 0.75000 %	0.01338 0.16440 0.08139 0.08000 0.75000	0.000179 0.027027 0.006624 0.006400 0.562500
1.1	Elasticity, Water Pulsation, & Reflected Waves in the Penstock	0.05000 %	0.05000	0.03047	0.000419				
			Sums of the Squares	Ļ	3.56430				0.60273
		Square Root of the	e Sum of the Squares	(8)	1.88794			(b)	0.77636
		101-124	doute to the Viewster			Random U	Incertainty at 95% C	onfidence = (c)	1.23518
		(c) = (Su	Student's t × (b) //sqri(n)	3.182				sar	$((a)^2 + (c)^2$
		n = average numb	er of replicates runs =	4		Overa	all Uncertainty at 95	% Confidence	2.25610
							95 % (ONFIDENCE	2.26

TABLE 3 SUMMARY OF UNCERTAINTY ANALYSIS VALUES

Ontario Power Generation Inc. Sir Adam Beck G.S. II Unit #26

Net Head instrument range 150 psi Unit Tailwater instrument range 5 psi

NET HEAD UNCERTAINTY ANALYSIS

Net Head 88.00 metres

		S	YSTEMATIC UN	CERTAINTY		RAND	OM UNCERTA	NTY
References	DESCRIPTION	Uncer	tainty	es	es ²	Uncertainty	er	er ²
		Instrument	Actual	% of Net			% of Net	
		Uncertainty	Uncertainty	Head			Head	
2.4 2.5 2.3	NET HEAD WATER LEVEL MEASUREMENT UNIT TAILWATER LEVEL MEASUREMENT VERTICAL CONTROL MEASUREMENT	0.05 % 0.10 % 1 mm	0.05277 m 0.00352 m 0.00100 m	0.05996 0.00400 0.00114	0.0036 0.0000 0.0000	100 mm 10 mm 3 mm	0.11364 0.01136 0.00341	0.0129 0.0001 0.0000
	Sums of the Squares 0.00361 0.01305							
	Squa	are Root of the Sur	m of the Squares	(a)	0.06011		(b)	0.11425
	Random Uncertainty at 95% Confidence = (c) 0.18178							0.18178
	n = a	n = average number of replicates runs = 4 Overall Uncertainty at 95 % Confidence				((a) ² + (c) ²) 0.19146		
						95 % (CONFIDENCE	0.19

TABLE 4	SUMMARY	0F	UNCERTAINTY	ANALYSIS	VALUES
		•••			

Ontario Power Generation Inc.
Sir Adam Beck G.S. II
Unit #26

Sation Headwater instrument range 10 psi Station Tailwater instrument range 5 psi

GROSS HEAD UNCERTAINTY ANALYSIS

Gross Head 87.8 metres

		S	SYSTEMATIC UNCERTAINTY				OM UNCERTAI	NTY
References	DESCRIPTION	Uncer	tainty	es	es ²	Uncertainty	er	er ²
		Instrument	Actual	% of Gross			% of Gross	
		Uncertainty	Uncertainty	Head			Head	
II-2.1 II-2.2 II-2.3	STATION HEAD WATER LEVEL MEASUREMENT STATION TAILWATER LEVEL MEASUREMENT VERTICAL CONTROL MEASUREMENT	0.100 % 0.100 % 1 mm	0.00704 m 0.00352 m 0.00100 m	0.00801 0.00401 0.00114	0.0001 0.0000 0.0000	10 mm 10 mm 3 mm	0.01139 0.01139 0.00342	0.0001 0.0001 0.0000
	Sums of the Squares 0.00008							0.00027
	Square Root of the Su	m of the Squares		(a)	0.00903		(b)	0.01647
		(c) = (Student'	s t x (b)) /sqrt(n)		Random Unc	ertainty at 95% C	onfidence = (c)	0.02620
Student's t = 3.182 so n = average number of replicates runs = 4 Overall Uncertainty at 95 % Confidence					sqrt % Confidence [((a) ² + (c) ²) 0.02771		
	95 % CONFIDENCE 0.03							0.03

TABLE 5 SUMMARY OF UNCERTAINTY ANALYSIS VALUES

Ontario Power Generation Inc. Sir Adam Beck G.S. II Unit #26 TURBINE EFFICIENCY UNCERTAINTY ANALYSIS	Servomoto	Net Head Power Output Average Discharge (Q) Full Servomoter Stroke Servomotor Stroke instrument range		88.00 metr 84.55 MW 102.6 m ³ /s 332.0 mm 1000 mm		
	SYSTEMA	TIC UNCERT	AINTY	RANDC	M UNCERT/	ANTY
References DESCRIPTION	Uncertainty	es (%)	es ²	Uncertainty	er (%)	er ²
TABLE 2DISCHARGE MEASUREMENTS (GIBSON)TABLE 3NET HEAD MEASUREMENTII-3.1GENERATOR OUTPUT MEASUREMENTSII-3.2GENERATOR LOSSES VALUESII-3.3PHASE SHIFTII-3.4TRANSFORMER INACCURACIESII-4SERVOMOTOR STROKE	0.05 % 0.10 % 0.10 % 0.40 % 0.05 %	1.88794 0.06011 0.05000 0.10000 0.10000 0.40000 0.15059	3.56430 0.00361 0.00250 0.01000 0.01000 0.16000 0.02268	2.0 kvv 2.0 kvv 1.0 kvv 2.0 kvv 0.5 mm	0.77636 0.18178 0.00237 0.00237 0.00118 0.00237 0.15059	0.60273 0.03304 0.00001 0.00001 0.00000 0.00001 0.02268
 Sui	ms of the Squares		3.77309			0.65847
Square Root of the St	um of the Squares	(a)	1.94245		(b)	0.81146
Random Uncertainty at 95% Confidence = (c) 1.29104						
n = average number of replicates runs = 4 Overall Uncertainty at 95 % Confidence					sqrt Confidence	<u>((a)² + (c)²)</u> 2.33235
				95 % CO	NFIDENCE	2.33

TABLE 6 SUMMARY OF UNCERTAINTY ANALYSIS VALUES

Ontario Power Generation Inc.			
Sir Adam Beck G.S. II	Gross Head	87.80	metres
Unit #26	Unit Output	80.54	MW
	Average Discharge (Q)	102.6	m³/sec
OVERALL UNIT EFFICIENCY UNCERTAINTY ANALYSIS	Full Servomoter Stroke	332.0	mm
	Servomotor Stroke instrument range	1000	mm

		SYSTEMA	TIC UNCERT	AINTY	RANDO)M UNCERT#	ANTY	
References	DESCRIPTION	Uncertainty	es (%)	es ²	Uncertainty	er (%)	er ²	
TABLE 2 TABLE 4 II-3.1 II-3.3 II-3.4 II-4	DISCHARGE MEASUREMENT (GIBSON) GROSS HEAD MEASUREMENT GENERATOR OUTPUT MEASUREMENTS PHASE SHIFT TRANSFORMER INACCURACIES SERVOMOTOR STROKE	0.05 % 0.10 % 0.40 % 0.05 %	1.88794 0.00903 0.05000 0.10000 0.40000 0.15059	3.56430 0.00008 0.00250 0.01000 0.16000 0.02268	2.0 kw 1.0 kw 2.0 kw 0.5 mm	0.77636 0.01647 0.00248 0.00124 0.00248 0.15059	0.60273 0.00027 0.00001 0.00000 0.00001 0.02268	
	Sums of the Squares 3.75956 0.62569 Square Root of the Sum of the Squares (a) 1.93896 (b) 0.79101							
Random Uncertainty at 95% Confidence = (c) <u>1.25849</u> (c) = (Student's t × (b)) /sqrt(n) Student's t = <u>3.182</u> sqrt ((a) ² + (c) ² n = average number of replicates runs = 4 Overall Uncertainty at 95 % Confidence <u>2.31157</u>						1.25849 ((a) ² + (c) ²) 2.31157		
					95 % CO	NFIDENCE	2.31	

