
Page 1 of 12    

10th International Conference on Innovation in Hydraulic Efficiency Measurements 
Septemberber  16rd – 19th 2014, Itajubá, Brasil 
 

A Kalman filter based approach for measuring sound speed, axial and 

transversal flow component in ATT measurements 

 

 
 

Peter Gruber 

peter.gruber@hslu.ch 

Lucerne University of Applied Sciences and Arts 

Technikumstr. 21, CH-6048, Horw, Switzerland 

& 

Rittmeyer Ltd , CH - 6340 Baar, Switzerland 

 

 

Abstract 

 

The ATT method for measuring the flow in hydropower applications is an accurate and well 

established method. The method uses normally a high number of transit time measurements in up- 

and downstream direction, from which the axial and transversal flow components are determined. 

In order to obtain a sufficient accuracy, the obtained transit times and transit time differences have 

to be filtered and averaged. Typical values of a pair of up- and downstream measurement for one 

path is 50 to 100 pairs per second. In the case that a transverse component of the flow is present, 

crossed paths are used in one layer, reducing therefore the rate of determining the axial and 

transverse flow by a factor of two. The conventional determination of the axial velocity of one path 

relies on the assumption that the speed of sound does not change during the measurement of the up- 

and downstream measurement process. If this assumption is violated, the conventional method 

treats this change as a measurement error for the transit times. In the following a Kalman filter 

based approach is chosen, which allows to distinguish between system noise and measurement 

noise. The system noise corresponds to the variations of the speed of sound, the axial and the 

transverse flow component of the flow, while the measurement noise reflects the inaccuracies 

introduced by determining the transit and transit time differences. The chosen system model is the 

so called random walk model for the three states speed of sound, the axial and the transverse flow 

component of the flow and four output quantities for the up- and downstream transit times for two 

crossed paths. The Kalman filter approach allows to weigh the variation of each state separately and 

to relate the magnitude of each of the noise sources to the measurement noise. Different situations 

of estimating the states in a noisy environment are examined with the help of simulation: stepwise 

change in speed of sound, axial and transverse flow. The influence of the choice of the weighting of 

the noise sources are investigated, showing the trade-off of noise rejection and signal tracking 

capabilities of the different filter parameterizations. 

 

INTRODUCTION 

 

The widely used ATT method for discharge measurement determines the flow Q  by a weighted sum 

over a number N of averaged axial path velocities axv , which can be obtained from the measured 

transit times of the acoustic pulses along the paths. 
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 The positions (heights) iz (or id ) and weights iW of the paths are determined by the integration 

method used, )( izb is the width of the conduit at position iz , D  the diameter of the conduit and k a 

possible geometrical correction factor. Fig. 1 illustrates the velocity components which play a role. 

The three dimensional velocity )(sv at a position s along the path A can be split in a vertical 

component which does not contribute to the path velocity and in two horizontal velocities )(svax  

and )(svtr  which build the layer velocity )(svlayer
. If the layer velocity is projected on the path, the 

transverse component leads to an erroneous velocity contribution )(svc . In order to eliminate this 

contribution a second crossed path B is added at the same height. Assuming the same averaged 

transversal component on each of the two crossed paths, the influence of the transversal component 

to the averaged path velocities can be eliminated. 
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Fig. 1: velocity components and acoustic paths 

 

Equation (2) and (3) give the relation between projected path velocity and transit time t : 
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The speed of sound c  is actually also an average speed along a path. If a crossed two path 

arrangement is chosen, four different transit times (two in up- and downstream direction) can be 

determined: 
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This quadruple of transit times is repeated up to 50 to 100 times per second, depending on the ping 

rate of the system. Assuming constant speed of sound and averaged velocities during the measuring 

process of the four transit times, the well-known formulae for the averaged axial velocity and the 

speed of sound are found: 
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Commercial measurement techniques apply the above formulae for the evaluation of the flow and 

the speed of sound. If consecutive measurements are logged without being filtered, a noisy 

behaviour of the instantaneous velocities can be observed, which can amount to a magnitude of up 

to +/- 20% of the long term average. Therefore averaging of the transit time and differences of the 

transit time must be applied in order to stabilize the flow measurement. Typically time constants of 

1 sec or more are used. It is an open question from where these variations in time measurement do 

occur. Is it due to underlying physical processes of turbulence or is it due to the acquisition of the 

signal and the determination of the times from the recorded signals? 

 

1. TIME-VARYING MODEL FOR VELOCITIES 

The determination of the velocities as given by equations (4) assumes a noise free environment and 

constant velocity components during the measurement process. In many ultrasonic devices the 

measurement process is done sequentially and not at the same time instant k . A possible time 

varying measurement process could be formulated as follows: 
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This model takes into account that the two acoustic paths are averaging different local path 

velocities. There are six time dependent averaged velocities involved: 

     (k), (k)),(, (k), (k)),( tr,2ax,22tr,1ax,11 vvkcvvkc                                     (8) 

and for independent noise sources )(, (k), (k)),( 4321 knnnkn . With the abbreviations 

 

   Tvvkcvvkckx )(k, (k)),(, (k), (k)),()( tr,2ax,22tr,1ax,11  =system state 

 

     Tud ktttktky )(, (k), (k)),()( 2d,2u11 =system output 

 

        Tknnnknkn )(, (k), (k)),()( 4321 =measurement noise                (9a-9c) 

 

The measurement process can be put in a compact form: 

 

)())()),((()())(),1(()(

))(()1(

knkxkxfgknkxkxgky

kxfkx





                     (10a,b) 

 

The nonlinear vector function g is given by the expressions (7a-7d), while the unknown vector 

function f describes the time evolvement of the averaged velocity components.  

The problem with this model is the definition of f . This definition must contain the effect of local 

turbulences on the vector components and is of a random nature. At the moment no such model was 

yet applied but if suitable random models are available, it certainly would be interesting to use these 

in this context. 

 

2. RECURSIVE ESTMATION OF VELOCITIES VIA KALMAN FILTER 

Lanzensdörfer [1] proposed a simplified model for which a least square solution can be found 

easily. It is assumed that  
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and additionally that the inverse of the transit times are defined as outputs. 
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The new measurement noise sources )(k  are rescaled quantities from the original noise sources 

)(kn under the assumption that the noise contribution is small. Equations (12) can be put into matrix 

form 
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and a linear problem least square problem for the unknown x can be formulated (Lanzensdörfer 

[1]). For N consecutive measurements the minimization of the performance index 
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leads to the normal equations. The solution for x can be found by direct inversion of a block of 

measurements or it can also be solved by an iterative procedure via a recursive least square method. 

By introducing a forgetting factor  it is possible to weigh new measurements heavier than older 

ones. This weighting prevents the recursive methods from getting insensitive to changes in the 

x (velocities) values. In flow measurement applications changes in these values are a fact. So either 

the block length or the forgetting factor must be chosen adequately in order to obtain satisfying 

results. 

Here another approach is followed. A dynamic model of 3rd order and constant coefficients is 

assumed for the time evolvement of the velocities, see Fig. 1.  

The states of this model are driven by the system noise )(kw . 
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The measurement equation for )(kz the system output )()( kxHky   corrupted by the measurement 

noise )(k . The dynamic model used is a random walk model (Gruber, Tödtli [2]) for the unknown 

but time varying velocities: 
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This can be written in matrix form (equation (15)) with 
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Fig.2: Random walk model for the acoustic measurement process 

 

All noise sources are assumed to be Gaussian, independent and uncorrelated: 
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The random walk model for a state K has the statistical properties, that the mean is constant and the 

variance is growing linear in time: 
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With the formulation from equation (13), (15), (17), and (18) a standard Kalman filter can be 

applied to the dynamic system (Sage, Melsa [3]. The Kalman filter is a filter, that tries to estimate 

the unknown state )(kx of the system by minimizing the error covariance between true state and an 

estimate )(ˆ kx of the state  

 )}(ˆ)(var{)( kxkxkP        (20)      
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The filter consists of two parts: a first part with a one step ahead prediction )(ˆ* kx of the state 

estimate )(ˆ kx and a one step ahead prediction )(* kP  of the error covariance matrix )(kP . In a 

second part the predicted value is updated and corrected with the weighted (with the Kalman gain) 

difference between the new measurement )1( kz and the output prediction without measurement 

noise 

)(ˆ)(ˆ*
kxHAkxH  . 

 

If the model is time invariant, the steady state Kalman gain matrix K can be computed off-line: 
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If the fixed point of the difference equations is reached, K can be obtained. K is in this case only a 

function of A, H, Q and R. K can then be used for the update equation of the state estimate 

corresponding to the velocities: 
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Fig. 3 shows the block diagram of the filter with the real measurements )(kz . Equation (22) allows 

estimate the speed of sound of water )(kc , the axial and the transversal component  )(kvax  and 

)(kvtr of the flow velocity.  

 
Fig. 3: Steady state Kalman filter implementation 
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3. FILTER PARAMETRIZATION STUDY 

The benefit of the Kalman filter compared to other recursive estimation methods is that it is possible 

to influence the time behavior of the filter in two ways: 

1) The ratio of the covariance matrices of the system noise Q over the measurement noise R . If 

RQ /  is much larger than 1, the measurement noise is much less weighted than the system 

noise, that means the filter tries to follow the measured output in a fast way. Each variation 

in the measurement is considered to stem from a change in )(kx . If RQ /  is much lower 

than 1, the system noise is much less weighted than the measurement noise, that means in 

this case the filter acts as a low pass filter. With this ratio it is possible to tune the filter such 

that a predefined settling time for step change in the velocities can be achieved. The higher 

the ratio RQ / is, the more confidence in the measured value is assumed. 

2) As the system noise consist of 3 noise sources, one for each velocity, it is possible to weigh 

them individually. That makes sense in this application because changes in speed of sound, 

axial and transversal components are not the same.  This possibility enhances the flexibility 

of the filter. 

 

We consider a situation with typical values as given in Fig. 4a-4d. In order to make the time 

behavior of the filter visible, step changes for the speed of sound at k=1000, the axial velocity at 

k=2000 and the transversal velocity at k=3000 are applied sequentially and the whole run is 

simulated during 4000 time steps. 
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Fig. 4: simulated process, a: axial flow velocity, b: transversal velocity, c: speed of sound, d: 

measured transit time (td1) 
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Fig. 5a -5d displays the ideal and noisy velocity components and the noisy transit time 

measurements due to velocity noise and measurement noise. The scaling of the horizontal 

axes is such that a time period without step change in the velocities is shown. The scaling of 

the vertical axes is for each graph different. 
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Fig. 5: examples of noisy velocity components and transit time measurement 

 

Example 1: A first example of a Kalman filter treats all noise sources as equal, that means all 

noise covariance matrices are chosen as the unity matrix. 
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The steady state Kalman filter gain matrix is then given by 
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Fig. 6a shows the determination of the axial velocity  if equations (5a, b) are used. No 

additional low pass filtering was applied. Fig. 6b shows the tracking capability and noise 

rejection of the chosen Kalman filter for the estimated  axial path velocity estimatedaxialv _  

and a low pass filtered (moving average of length 25) signal filteredaxialv _ of the measured 

axial velocity together with the ideal axial velocity. Fig. 6c shows the same for the 
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transversal component. Both figures indicate that the Kalman filter is not well tuned to the 

simulation conditions, while the low pass filter behaves much better. In order to compare the 

filters the following performance criteria have been used: 
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The values of these indices are tabulated in Table 1. Fig. 6d shows the performance of the 

Kalman filter for the estimation of the speed of sound.  
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Fig 6:a) measured axial velocity, b) Kalman filter estimate and filtered measured axial 

velocity, c) Kalman filter estimate and filterede measured transversal velocity, d) Kalman 

filter estimate for sound speed. 

 

Example 2: In this example the covariance matrices are adapted as follows: The diagonal 

elements of the covariance matrix are weighted individually with diminishing magnitude of 

the velocity components. The values 1000, 10 and 1 are chosen arbitrarily (the same holds 

for R), the ratio between the elements however is chosen according to the magnitudes. Also 
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the diagonal elements of  R are all equal and at least ten times larger than the values for Q. 

Therefore a low pass filter effect can be expected. 
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The steady state Kalman filter gain matrix is now changed to 
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Figure 7 displays the same quantities as in example 1. It is clearly visible that the Kalman 

filter performs much better than before and even outperforms the moving averaged filtered 

estimate (see Table 1). That means that with an appropriate Kalman filter parametrization 

good results can be obtained. Keep in mind that the above choice of the filter was not 

optimized explicitly to the noise sources but were chosen by inspection. 

0 500 1000 1500 2000 2500 3000 3500 4000
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
ideal & noisy axial velocity

number of measurements

v
a
x
ia

l

 

 

v axial measured

v axial ideal

0 500 1000 1500 2000 2500 3000 3500 4000
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
estimated axial velocity

number of measurements

v
a
x
ia

l

 

 

v axial estimated

v axial filtered

v axial ideal

 
 

0 500 1000 1500 2000 2500 3000 3500 4000
-1

-0.5

0

0.5

1

1.5
estimated transversal velocity

number of measurements

v
tr

a
n
s
v
e
rs

e

 

 

v transversal estimated

v transversal filtered

v transversal ideal

0 500 1000 1500 2000 2500 3000 3500 4000
1460

1465

1470

1475

1480

1485

1490
estimated sound speed

number of measurements

c

 

 

c estimated

c ideal

 
Fig 7:a) measured axial velocity, b) Kalman filter estimate and filtered measured axial 

velocity, c) Kalman filter estimate and filtered measured transversal velocity, d) Kalman 

filter estimate for sound speed. 
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Performance index Example 1 Example 2 

Unfiltered Jmeasured               1386                  1420 

moving average length 25 Jfiltered                 304.6                    336.0 

Kalman filter JKalman                 933.5                    251.4 

 

Table 1: Performance indices for the different filtering techniques for the two examples 

 

4. OUTLOOK AND CONCLUSION 

By tuning a Kalman filter  for a random walk model of the physical measurement process 

properly it has been shown that a recursive estmation of the time varying velocity 

components )(),(),( kckvkv transax  are possible without the use of the delta time information 

found via the correlation of up- and downstream acoustic pulses. Due to this fact, the 

following problems could be addressed: 

 Behavior of the filter for slowly varying situation (sinusoidal, ramp-like) 

 Optimization of the filter for measured noise levels 

 Comparison of the filter performance for  different methods to determine the transit 

times to a sufficiently high accuracy 

 Evaluate the filter with real measurements 

 Can the Kalman filter solution be extended to a situation where also the delta time 

between up- and downstream pulses can be included? 

 Modelling the measurement noise dependent on the method of transit time 

determination 

 Modelling of the system noise by using some turbulence model. 
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