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INTRODUCTION 

 

The IEC41 norm [1] on hydraulic efficiency is under a major revision. The Acoustic Transit Time 

(ATT) method for flow measurement, up to now classified only as a secondary method listed in the 

Annex, will move forward and will become a primary method for determining the flow in turbines 

and pump-turbines. Major upgrades include the introduction of the OWICS method for flow 

integration and the extension of recommended values of the number of acoustic paths N. The 

OWICS method is expected to improve for fully developed velocity profiles the flow integration 

accuracy in comparison with the Gauss-Jacobi method by the use of a more realistic velocity 

profile. An increase of the number of acoustic paths N is also expected to improve the accuracy of 

flow integration. Comparisons of the OWICS and Gauss-Jacobi methods have already been 

conducted in [2, 3]. However, it was done only for N=4 and for the analytically defined flow 

velocity profiles. The integration error   of the OWICS and the Gauss-Jacobi methods as a 

function of N have also been carried out in [1]. However, these calculations were made only for 

fully developed flow velocity profiles. Therefore, the main objective of this study is to compare the 

performance of the Gauss-Jacobi and the OWICS methods, and the benefit of an increase of N 

under more realistic disturbed flow conditions. 

 

1. GENERAL THEORY AND PROBLEM STATEMENT 

 

 

Fig. 1: Conventional ATT flow meter schematic 

Figure 1 shows the schematic of a typical ATT flow meter installation. Conventionally, it consists 

of several acoustic paths which form two equal measuring planes. The most common number N of 

acoustic paths in one plane is 4, however, according to the latest IEC41 code revision, the 

recommended number of acoustic paths N is allowed to vary from 4 to 9. Two paths on the same 

level form a measuring layer, i.e. total number of measuring layers equals N. Double plane design is 

used to decrease the possible influence of cross flow on the accuracy of measurements. 
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 In order to prevent possible misunderstandings, in the framework of the present paper, if nothing 

else is specified, the value N means the number of measuring paths in each measurement plane, i.e. 

the total number of measuring paths in a N-path flow meter is 2N. Therefore also the abbreviation 

4(8)-path in the title.  

 

1.1 The area flow function 

The total flow rate through a unit circle cross section can be approximated as a sum of the 

elementary flow rates passing through the number of horizontal layers (Fig. 1.2, left): 
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where axiv : average axial velocity at i-th layer 

il : projected path length (Fig. 1.2, right) 

z : width of i-th layer 

 

 

Fig. 2: Schematic of flow measurement in a regular pipe using the ATT technique with normalized 

radius of R=1  

 

Tending the number of layers N to infinity, the sum in eq. (1) can be replaced by the integral: 
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with )()()( zlzvzF ax                     (3) 

The function )(zF  is called area flow function and describes the distribution of the partial flow 

rates through the elementary layers of the cross section and has dimension [m2/sec]. A flowmeter 

has a finite number N of measuring layers, therefore, the integral in eq. (2) has to be replaced by a 

finite sum of N discrete values of
 

)( izF . Conventionally, for that purpose the Gaussian quadrature 

method is used, because it has the highest polynomial degree of 2N-1 of all the existing quadrature 

methods The polynomial degree of a quadrature method indicates the highest order of a polynomial 

which can be integrated with zero error. Replacing the integral in eq. (1) by the N-point Gaussian 

quadrature leads to eq. (4) [2]: 
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with iw : weighting factor for i-th measuring layer 

iv : averaged axial velocity at i-th measuring layer  

il : projected path length 

R: radius of circular section 

 

1.2 Weighting and positioning 

The highest polynomial degree of the Gaussian quadrature among existing quadratures obtained 

thanks to the specifically calculated positions of the quadrature nodes (corresponding to the heights 

iz  of the measuring layers). The positions iz  of the N-path Gaussian quadrature can be found as 

the  zeros (roots) of the polynomial pN(z) generated by the recurrence relation: 
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The weighting factors iw  are calculated according to the equation: 
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As the positions and weights are defined during the stage of the meter installation, the future flow 

conditions and, particularly, the real area flow function Freal in the measurement section are, 

obviously, unknown. Therefore, in order to calculate the weights and positions an assumed are flow 

function Fassum is conventionally used in eqs. (5)-(6) for F. This assumed area flow function Fassum is 

determined based on the measurement section’s geometry and an assumed velocity profile )(rvassum . 

In the conventional Gauss-Jacobi method for circular section this profile is assumed uniform, which 

leads to a deviation of the integrated discharge from the true discharge in the case of fully 

developed flow. Therefore, Voser [2] proposed the OWICS method which uses the profile of eq. (7) 

for calculating the positions and weights. The N-path Gaussian quadrature method guaranties that 

polynomial deviations of order 2N-1 of the real area flow function Freal from the assumed area flow 

function Fassum can still be integrated with zero 
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Table 1 shows the Gauss-Jacobi positions Rzi /  for N=1..5 and corresponding weights iw  

calculated according to the Gauss-Jacobi and OWICS methods. In practice, for OWICS method, 
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Due to practical reasons, usually the Gauss-Jacobi positions are used for the OWICS method and 

the weights are recalculated according the OWICS method taking into account the actual paths’ 

positions. The sensitivity investigation of Tresch & al. [2] shows the negligible influence on the 

accuracy of such minor paths’ shift. 

 

 Gauss-Jacobi OWICS 

N zi/R [-] wi [-] zi/R [-] wi [-] 

1 0 1.570796 0 1,513365 

2 0.5 0.906900 0,48795 0,890785 

3 0 0.785398 0 0,768693 

 0.707107 0.555360 0,695608 0,553707 

4 0.309017 0.597566 0,303783 0,588228 

 0.809017 0.369316 0,799639 0,371884 

5 0 0.523599 0 0,515768 

 0.5 0.453450 0,493266 0,448857 

 0.866025 0.261799 0,858534 0,265433 

 

Table 1: Path positions and weights for N=1,..5 [2] 

 

1.3 Problem statement 

The OWICS method will probably be approved for the flow integration by the latest revision of the 

IEC41 norm [1]. However, there is no data published which allows to conclude whether and under 

what circumstances the new OWICS method outperforms the conventional Gauss-Jacobi method in 

terms of accuracy. Hence, the first objective of this study is the comparison of the OWICS and 

Gauss-Jacobi methods in terms of integration accuracy. 

One of the main features of numerical quadrature is that the integration accuracy grows with the 

number of quadrature nodes. This means that for the discharge integration the accuracy of the flow 

rate integration is expected to improve with the number of acoustic paths. The proposed revision of 

the IEC41 code extends the range of recommended number of acoustic paths (in previous version 

the N=4 meter was considered as basic). The first question is therefore: how much can be gained in 

terms of accuracy if N is increased from 4 to 5? It was mentioned above that in practice the OWICS 

method often uses the Gauss-Jacobi positions, which means, the only difference between the 

methods consists in the values of weights used. Unlike to this fact, an increase of the number of 

acoustic paths leads in many cases to the need of new sensors. Consequently, it is of high practical 

interest to the manufacturers to understand the benefits of changing the existing industry standards. 

Hence, the second objective of this study is to increase the number of measuring layers by one and 

compare the former basic 4-path arrangement with a 5-path. Here higher number of paths are not 

investigated here although installations of 9-path arrangements exist. 

Drilled in acoustic transducers for ATT flow meters in circular section are usually designed for 

exact path positions Rz / . At the moment transducers for 4N  (and N=9) at Gauss-Jacobi 

positions are common. However, for a 5-path Gauss-Jacobi arrangement (Table 1) the transducer 

for the position of 866025.0/ Rz  needs to be developed (the transducers for Rz / =0; 0.5 are 

already used in 1- and 2-path arrangements correspondingly). If therefore the outer path of a 5-path 

arrangement could be shifted from the 866025.0/ Rz  to the 809017.0/ Rz  position (Fig. 3) 

which corresponds to the outer path of a 4-path arrangement (Table 1), the necessity to develop a 

new transducer could be avoided. This not negligible shift affects the accuracy of the flow rate 

integration as the Gaussian quadrature requires specifically calculated quadrature nodes. The third 

objective of this study is therefore to evaluate the performance of a 5-path arrangement with shifted 

outer paths, in the framework of this paper referred to as 5(4)-path arrangement.  
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Fig. 3: Gauss-Jacobi 5-path (solid lines) outer path shift to 4-path position (dashed line) 

 

2. THE ACCURACY OF FLOW INTEGRATION INVESTIGATION 

 

2.1 Research methodology 

Considering the objectives stated in the previous section, the following arrangements were selected 

for a comparative study: 

– Gauss-Jacobi 4-path 

– Gauss-Jacobi 5-path 

– Gauss-Jacobi 5(4)-path 

– OWICS 4-path 

– OWICS 5-path 

In the OWICS configurations the acoustic paths are arranged according to the Gauss-Jacobi method 

and the weights are recalculated according to the OWICS method for the Gauss-Jacobi positions. 

The summary of the path positions Rzi /  and the weights iw  for selected configurations are 

presented in Table 2. 

 

 
Gauss-Jacobi 4-path Gauss-Jacobi 5-path Gauss-Jacobi 4(5)-path OWICS 4-path OWICS 5-path 

 
zi/R[-] wi[-] zi/R[-] wi[-] zi/R[-] wi[-] zi/R[-] wi[-] zi/R[-] wi[-] 

Path 1 -0,809017 0,369317 -0,866025 0,261799 -0,809017 0,315435 -0,809017 0,365222 -0,866025 0,265433 

Path 2 -0,309017 0,597566 -0,5 0,453449 -0,5 0,346402 -0,309017 0,598639 -0,5 0,448857 

Path 3 0,309017 0,597566 0 0,523598 0 0,599994 0,309017 0,598639 0 0,515768 

Path 4 0,809017 0,369317 0,5 0,453449 0,5 0,346402 0,809017 0,365222 0,5 0,448857 

Path 5 
  

0,866025 0,261799 -0,809017 0,315435 
  

0,866025 0,265433 

 

Table 2: The summary of the path positions Rzi /  and the weights iw  for selected configurations 

The following integration error  (eq. 8) is used as performance criterion: 
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For the investigation of the integration error, the measured velocity values iv  and the reference 

flow rate value Qref are needed as input data. This data is obtained from numerical simulation. The 

study of the selected configuration’s performances is divided into two logical parts. In the first part 

the performance of the selected configurations is studied for the example of the flow downstream of 

elbow-type disturbers: straight pipe (for reference), single 90° elbow, double 90° elbow in plane 

and double 90° elbow out of plane (Fig. 4). For each disturber two installation positions are studied: 

2D and 5D downstream the disturber And three different Reynolds numbers are considered: 105, 

106 and 107. Additionally, at each installation position the azimuthal installation angle α of the 

meter is varied from 0 to 180° in 15° steps in order to investigate the installation angle effect. 

In the second part of study the performance of the selected configurations is studied for the example 

of the simulated flow in the Aratiatia hydraulic power plant water intake Hug & al. [4] (Fig. 5). This 

part investigates the meter performance for different hydraulic conditions in a real plant. 

a  

b  

c  

d  

Fig. 4: Investigated disturbers` schematics and 3D models: a: straight pipe; b: single 90° elbow; c: 

double 90° elbow in plane; d: double 90° elbow out of plane 
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Fig. 5: Aratiatia hydraulic power plant schematic 

 

2.2 Performance investigation on example of elbow-type disturbers 

2.2.1 Numerical simulation of flow downstream the selected disturbers 

The main data of the simulated flow are: 

Pipe diameter: D = 0.5 m 

Reynolds number Re: 105, 106, 107  

Flow velocity: 0.2, 2, 20 m/s 

 

The numerical simulation was performed with the ANSYS Fluent 14.5.7 software. The 

computational O-grid mesh with 2x106 cells was developed in ANSYS ICEM CFD 14.5.7. The 

flow was simulated implementing the SST (Shear Stress Transport) model. For the inlet boundary 

condition of the computational domain the fully developed velocity profile shown in Fig. 2.3 is 

used. This profile was obtained from numerical simulation of the flow in a straight pipe of 5D 

length with translational periodic boundary conditions. 

 

 
 

Fig. 6: Fully developed velocity profile used for inlet boundary condition definition 
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2.2.2 Results and discussion 

Figure 7 shows the simulated velocity contours in a periodic straight pipe.  The integration error 

values for a straight pipe are presented in Table 2.2. 

 

 

 

Fig. 7: Simulated mean velocity contours in straight pipe 

 
4-path 5-path 5(4)-path 

 
G-J OWICS G-J OWICS G-J 

   [%] 0,27 0,14 0,20 0,13 0,23 

Table 3: Integration error values for fully developed flow in the straight pipe 

Figures 8-10 show the simulation results for the selected disturber together with the integration 

error values of each studied arrangement as a function of the installation angle α and a Reynolds 

number of 105. In the appendix the simulation results are shown for the Gauss-Jacobi methods and 

Re=106 and 107. Additionally, each graph contains marked with colored circles “eps_average”-

values, the error value averaged over all the installation angle. In order to simplify the perception of 

the data presented in Fig. 8-10 and Table 3, the summary of the average integration error   and the 

error dispersion 
disp  (difference between minimal and maximal error values over all angles), for 

each disturber and configuration are shown in Table 4.  

From the summary presented in Table 2.3, Fig. 8-10 and the appendix, the following observations 

can be made: 

1. The OWICS method has a smaller average error value   than the Gauss-Jacobi method. The 

error dispersion value disp , however, is virtually independent on the method used. 

2. A increase of the number of acoustic paths N from 4 to 5 significantly (up to 50%) decreases 

the average integration error  .  

3. The meter installation at the 5D downstream position does not improve the average error 

value  , however, the error dispersion disp  significantly (up to 60%) decreases in 

comparison with 2D downstream the elbow. 

4. For each disturber and position (2D, 5D) a specific range of angle of installation can be 

defined which minimizes the integration error under the assumption that the simulation is 

correct. 

5. The variation of the Reynolds number does not show a clear trend. 

The Gauss-Jacobi 5(4)-path arrangement usually performs worse than the Gauss-Jacobi 4-path 

arrangement in terms of average integration error  . The error dispersion value of this arrangement 

is not definitely better or worse than the Gauss-Jacobi 4-path arrangement’s, however is 

significantly worse than Gauss-Jacobi 5-path arrangement’s.   
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Fig. 8: Integration error values for single elbow, Re=105 
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Fig. 9: Integration error values for double elbow in plane, Re=105 
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Fig. 10: Integration error values for double elbow out of plane, Re=105 
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4-path 5-path 5(4)-path 

 
 

 
Gauss-Jacobi OWICS Gauss-Jacobi OWICS Gauss-Jacobi 

 
 

 
2D 5D 2D 5D 2D 5D 2D 5D 2D 5D 

Straight pipe Re=105 
 [%] 0,27 0,14 0,20 0,13 0,23 

disp [%] - - - - - 

Single Elbow 

Re=105 
 [%] 0,24 0,36 0,07 0,20 0,34 0,23 0,25 0,16 0,68 0,58 

disp [%] 1,22 0,63 1,22 0,63 1,02 0,43 1,02 0,43 1,56 0,69 

Re=106

 

 [%] 0.87 0.48 0.70 0.32 0.21 0.27 0.12 0.18 - - 

disp [%] 2.46 0.92 2.45 0.92 1.05 0.32 1.05 0.31 - - 

Re=107

 

 [%] 0.45 0.41 0.28 0.25 -0.15 0.19 -0.25 0.11 - - 

disp [%] 2.50 0.88 2.49 0.89 2.32 1.15 2.32 1.14 - - 

Double elbow 

in plane 

Re=105 
 [%] 0,54 0,38 0,36 0,22 0,24 0,32 0,15 0,23 0,70 0,64 

disp [%] 1,83 0,59 1,90 0,59 0,63 0,47 0,63 0,45 0,80 0,73 

Re=106

 

 [%] 0.1 0.82 -0.09 0.66 0.06 0.09 -0.02 0.01 - - 

disp [%] 2.41 0.78 2.41 0.77 2.46 0.73 2.45 0.72 - - 

Re=107

 

 [%] 0.86 0.40 0.67 0.24 0.54 0.31 0.45 0.22 - - 

disp [%] 1.89 0.49 1.89 0.49 0.49 0.32 0.49 0.32 - - 

Double elbow 

out of plane 

Re=105 
 [%] 0,50 0,39 0,32 0,23 0,23 0,28 0,14 0,19 0,42 0,55 

disp [%] 2,10 1,08 2,12 1,10 1,29 0,63 1,28 0,65 1,92 0,67 

Re=106

 

 [%] 0.19 0.46 0.01 0.30 0.33 0.27 0.25 0.18 - - 

disp [%] 2.08 2.73 2.07 2.74 0.91 2.13 0.91 2.12 - - 

Re=107

 

 [%] 0.11 0.07 -0.08 -0.06 0.24 0.25 0.15 0.16 - - 

disp [%] 1.43 1.69 1.43 1.67 1.56 1.37 1.55 1.36 - - 

Table 4: Average integration error   and error dispersion 
disp  values summary 

 

2.3 Performance investigation for the Aratiatia power plant 

2.3.1 Numerical flow simulation at Aratiatia power plant 

The simulations were performed with ANSYS CFX 12.0. 

Three different operating conditions were simulated:  

–  Test 1: 3x90 m3/s (all three turbines in operation)  

–  Test 2: 2x90 m3/s (turbine 1 and 2 in operation, turbine 3 shutdown)  

–  Test 3: 1x50 m3/s (turbine 1 in operation, turbine 2 and 3 shutdown)  

The boundary conditions for these operating points are listed below:  

Inlet: The straight intake tunnel of the power plant is about 50 diameters long with constant circular 

cross section. The range of the Reynolds numbers lies between Re=7·106 and 4.3·107 for the 

investigated operating points. Consequently, a fully developed velocity profile can be assumed at 
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the inlet to the simulation domain. This profile is calculated beforehand for each of the given flow 

rates in a separate simulation with a 2 diameter short straight section with translational periodic 

boundary conditions. These velocity distributions as well as the turbulence quantities are then used 

as inlet conditions for the main simulations.  

Outlets: The number of outlets varies from 1 to 3 outlets depending on the operating conditions. 

The mass flow is set for each of the outlets. The outlet mass flows then are linked to the mass flow 

at the inlet in order to satisfy the mass flow balance. The expressions in the brackets show the 

boundary conditions, which are set at the outlet.  

Test 1: All three outlets have the same mass flow. 

Test 2: Outlet 1 and 2 have the same mass flow. Outlet 3 is defined as a no slip wall. This is a 

simplification, in reality the domain ends in the spiral casing upstream of the closed guide vanes.  

Test 3: Outlet 1 and inlet have the same mass flow. Outlet 2 and 3 are defined as no slip walls.  

Wall. The wall is specified as a no slip wall assuming hydraulically smooth surfaces.  

Free surface: The free surface of the surge tank is defined as a free slip wall. This means that the 

water level is constant and the water has no friction at this boundary. 

 

2.3.2 Meter performance at Aratiatia power plant 

In Table 5 the integration errors   for different simulated cases are shown. The code for the cases 

is as follows: the first number (1, 2 or 3) indicates how many penstocks are in operating, the second 

number (50, 90 or 110) indicates the flow rate, the term in brackets (1+2 or 1+3) indicates which of 

3 penstocks are in operating, the last part of the code (P1 or P2) tells which penstock is evaluated. 

The best result in the string is marked with the green color, the worst with the red color.  

 Integration error  [%] 

 

Gauss-Jacobi 

4-path 

[%] 

Gauss-Jacobi 

5-path 

[%] 

Gauss-Jacobi 

5(4)-path 

[%] 

OWICS 4-path 
[%] 

OWICS 5-path 
[%] 

1x50_P1 1,09 -0,46 0,46 0,91 -0,56 

1x50_P2 0,16 0,34 -0,21 0,00 0,03 

2x90(1+2)_P1 -0,99 0,86 -1,27 -1,17 0,75 

2x90(1+2)_P2 0,30 0,02 -0,14 0,14 -0,08 

2x90(1+3)_P1 0,27 0,18 -0,36 0,10 0,08 

3x50_P1 1,02 -0,28 0,54 0,84 -0,37 

3x50_P2 1,04 -0,03 -0,19 0,91 -0,12 

3x90_P1 0,97 -0,35 0,60 0,80 -0,45 

3x90_P2 0,91 0,08 -0,18 0,77 0,00 

3x110_P1 0,96 -0,37 0,62 0,78 -0,47 

3x110_P2 0,86 0,11 -0,17 0,72 0,03 

 [%] 0.60 0.01 -0.03 0.44 -0.10 

 

Table 5: Integration error summary for Aratiatia installation 

As can be seen from the Table 5, the worst configuration is the Gauss-Jacobi 4-path. The best 

performance exhibits the Gauss-Jacobi 5-path configuration. The OWICS 5-path configuration has 

the best result in 4 cases out of 11. So the OWICS method superiority over the Gauss-Jacobi is not 

confirmed. If the penstocks are operated in a symmetrical mode, OWICS outperforms the Gauss-

Jacobi configuration indicating that OWICS is more suitable for less disturbed flow profiles. The 
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accuracy improvement by increasing N is confirmed, as well as that a 4(5)-path configuration is 

useless. 

 

CONCLUSION 

 

In the first part the performance of different measuring configurations was investigated with the 

example in the presence of different elbow-type disturbers upstream of the measurement section.  

The obtained results show a definite superiority of the OWICS integration method over the Gauss-

Jacobi method in terms of the average error  . Additionally, the results confirm that the increase of 

the number of acoustic paths from 4 to 5 decreases the average integration error  and the error 

dispersion 
disp . Furthermore, the effect of the flow disturbance intensity on the error dispersion 

value is observed: at 5D installation location the integration error dispersion values 
disp  are 

significantly smaller than the corresponding values at 2D. However, a larger distance from the 

disturber does not improve the average error  . It’s cause could be the result of a systematic 

inaccuracy in the weighting and positioning procedures, as even in case of the straight periodic 

pipe, where the flow is fully developed, the integration error is still present (Table 2.3). For each 

disturber and position (2D, 5D) a specific range of angle of installation can be defined which 

minimizes the integration error under the assumption that the simulation is correct. If no simulation 

is available or if it is too inaccurate, the average integration error   together with its dispersion 

disp  is a good estimate of what kind of accuracy range can be expected.  The first part of the study 

also demonstrates that the Gauss-Jacobi 5(4)-path arrangement is worthless, as in terms of the 

average error   value it performs even worse than Gauss-Jacobi 4-path arrangement. 

In the second part, the performance of a specific measuring configurations was studied on the 

simulated flow of the Aratiatia power plant in New Zealand. The results from the Table 5, unlike 

the ones of Table 4 don’t show a definite superiority of the OWICS over the Gauss-Jacobi method. 

However, they also confirm that by increasing the number N of measuring paths from 4 to 5 the 

integration error value decreases. It is also demonstrated, that the 5(4)-path arrangement is inferior. 

In the cases with symmetrical operation of the power plant, the OWICS integration error for 5-paths 

for the middle pipe P2 is on the average superior to the other methods. 
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Appendix: Velocity distributions after the disturber and integration errors for the Gauss-

Jacobi methods for Reynolds number of 106 and 107 (105 is already in main body Fig. 8-10) 

 

Single elbow 

 

 

Re=106 

 

 

Re=107 
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Double elbow in plane 

 

 

Re=106 

 

 

Re=107 

 



17 

 

Double elbow out of plane 

 

 

Re=106 

 

 

Re=107 


