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Abstract

We present a feasibility study of Gibson's method for low and

medium head plants using not a single and complete closure of the

wicket gates but a stepwise closing procedure. One has to wait until

�ow stabilizes after each step to initiate another step of abrupt closing

operation. Therefore, n steps before complete closure gives n measur-

ing points instead of a single measuring point in applying the common

procedure. That decreases the overall time consumption of the test

session and reduces the rejected loads impacting the stability of the

electrical grid and the mechanical components. In this paper, we show

the theoretical basis and the corresponding uncertainty estimation for

this variant of Gibson's method. Instationary simulations and results

will be presented at the conference.
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1 Introduction

The application of the Pressure-time method aka Gibson's method on units
in hydropower plants is of great interest. It is rather used on turbines than
on pumps (e.g., [1]). The minor e�orts related to time consumption of in-
stallation makes it an attractive alternative compared to other primary �ow
measurement methods especially on low and medium head units. The suc-
cessful outcome of a testrun is closely related to the deceleration rate of the
water inside the closed piping. The steeper the temporal decrease of �ow
∂v/∂t � the steepness of this value is comparable to that one during an
emergency shutdown � the better the signal-noise-ratio (SNR) of the pres-
sure signal(s) and the higher the reliability. The so-induced water hammer
gives understandably rise to limitations with respect to allowable mechan-
ical stresses. However, operating companies often refuse the application of
the Pressure-time method because of the negative impact of the fast load-
rejection onto the grid stability. The quality of power grid networks with low
capacity su�er hard under such circumstances and are able to collapse if the
rejected load cannot be compensated. In these cases one has to choose an-
other measuring method, which is most likely more costly, since alternative
variants of the Pressure-time method are neither indicated nor recommended
by the leading test codes [2, 3, 4].
We discuss the signi�cance of a new variant of Gibson's method in this pub-
lication. This variant di�ers from the original procedure in applying several
small deceleration steps of the water instead of a single and complete decel-
eration by complete closure of the �ow regulation device (e.g., wicket gates).
One can test the unit's behavior at n operating points before minimum open-
ing of the closure device instead of a single operating point if using the com-
mon procedure. The grid network should su�er therewith only from small
amount of abrupt load-changes. It can react within an short time frame to
compensate the power needs by changing the loads on other energy generat-
ing units. Therefore, we should be able to apply this variant of Pressure-time
method even on a unit which is part of a small isolated network.
Since we could not yet test the new procedure in practice, we have to rely on
simulation data obtained from one-dimensional instationary �ow calculations
by the software SIMSEN to check the feasibility and the limitations. These
results will be presented at the conference. Although this paper primarily
deals with �ow through turbine units in both modes, i.e., using deceleration
and acceleration procedure, the work�ow for testing pumps is similar but is
not treated in here.
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2 Theoretical basis

We do not give a detailed mathematical and physical background of the
general Pressure-time method since it has already been discussed excellently
elsewhere [4, 5].
Consider a turbine operating at high load and under steady head conditions.
We start our data recording. The Gibson di�erential pressure pG(t) �uctuates
randomly around the running line pressure pRL. Let us add the index 1 to
the last-mentioned symbol, i.e., pRL,1, to indicate that this pressure value
belongs to the evaluation procedure of the initial mass �ow (ρQ)1. After a
fast but partly deceleration of the water in the piping the pressure conditions
stabilize again and we end up with a Gibson pressure denoted by the static
line pressure pSL. We put the index 1 into this symbol and call it pSL,1.
Between the transient stabilization of pRL,1 and pSL,1 the mass �ow changed
from (ρQ)1 to (ρQ)2, where (ρQ)2 < (ρQ)1. At this stage pG(t) �uctuates in
stochastic manner around pRL,2. Consequently, we equate this running line
pressure with the static line pressure of the previous step pRL,2 = pSL,1 or,
generally speaking,

pRL,i+1 = pSL,i ∀i ∈ {N|i < n} . (1)

We repeat the procedure of deceleration a total of n times until leakage �ow
ρq (or zero �ow) is reached. See reference [6] for leakage �ow determination.
After pG(t) stabilizes signi�cantly at pSL,n we can stop the data recording.
The analysis starts now at the very end of the collected data. Mass �ow rate
(ρQ)n is calculated by

(ρQ)n =
1

F

tn+∆tn∫
tn

[pG(t)− pR(t)] dt+ ρq (2)

with
pR(t)− pSL,n
pRL,n − pSL,n

=
[(ρQ)(t)]2 − (ρq)2

(ρQ)2
n − (ρq)2

. (3)

The parameters tn and ∆tn denote an appropriate choice of the integration
starting time and the time length [5], respectively. The behavior of the
recovery line pressure pR(t) between the time interval [tn, tn + ∆tn] needs
iterative computation with the previous two equations. Thus, we are able to
determine the loss coe�cient ζ at mean Reynolds number

Ren ∝
1

µ∆tn

tn+∆tn∫
tn

(ρQ)(t) dt (4)
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by reordering

pRL,n − pSL,n
(ρQ)2

n − (ρq)2
=

1

2ρ
·
[
α2

A2
2

(
1 + ζ(Ren)

)
− α1

A2
1

]
. (5)

The parameters A1 and A2 label the cross-section of the Gibson measure-
ment section 1 (upstream) and 2 (downstream). Since we do not have any
information of the available �ow pro�le at both measurement sections, the
correction factors α1 and α2 are set to unity.
Hopping back in time of the recorded data we compute the relevant param-
eters analogously by

(ρQ)i =
1

F

ti+∆ti∫
ti

[pG(t)− pR(t)] dt+ (ρQ)i+1 , (6)

pR(t)− pSL,i
pRL,i − pSL,i

=
[(ρQ)(t)]2 − (ρQ)2

i+1

(ρQ)2
i − (ρQ)2

i+1

, (7)

Rei ∝
1

µ∆ti

ti+∆ti∫
ti

(ρQ)(t) dt (8)

and

ζ(Rei) =

(
A2

A1

)2

− 1 + 2ρA2
2 ·

pRL,i − pSL,i
(ρQ)2

i − (ρQ)2
i+1

. (9)

We do not require the calculation of the loss coe�cient dependency on the
Reynolds number to determine the contributing mass �ow steps. But it
reveals the minor value changes with respect to the frictional behavior of
�uid and pipe wall between both Gibson measurement sections. Hence, this
variant elaborates more sensitively on changes in friction than the common
procedure does, which uses only one loss coe�cient for the complete closing
procedure. By increasing the number of mass �ow steps n one gains an even
higher resolution of ζ(Re). Anyhow, the integer value of n is limited by the
SNR of the pressure measurement devices in use.

3 Uncertainty estimation

Detailed uncertainty analyses have already been published for the commonly
used procedure [7]. Here, we give a rough estimate of the expectable measure-
ment uncertainty, stated by the expanded uncertainty U [(ρQ)i] = ku[(ρQ)i]
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[8], in using the cascadian technique.

Consider n steps equidistant in mass�ow starting from (ρQ)1 down to
zero leakage. That is,

(ρQ)i = (n+ 1− i)/n · (ρQ)1 (10)
(ρQ)n+1 = ρq = 0 kg/s . (11)

We assume that the relative standard uncertainty of the measurement con-
ditions1 uM/(ρQ) and of the integration area u(B)/(ρQ) remain unchanged
for the individual steps. The combined standard uncertainty of the �nal
cascadian step before zero leakage thus yields

un =
uc[(ρQ)n]

(ρQ)n
=

√
u2(B) + u2(F ) + u2

M

(ρQ)n
(12)

including the standard uncertainty of the pipe factor u(F ). We bear in mind
that the mass�ow equation for the previous steps consists of the integrational
term Bi/F and of the subsequent mass�ow (ρQ)i+1. Therefore, with the aid
of equation (10) we obtain the relative standard uncertainty of mass�ow i
recursively by

ui =

√
u2
n + (n− i)2 · u2

i+1

n+ 1− i
∀i ∈ {N|i ≤ n} .

(13)

Expanding ui+1 until un �nally yields

ui
un

=
1√

n+ 1− i
(14)

uc[(ρQ)i]

uc[(ρQ)n]
=
√
n+ 1− i (15)

for all i ∈ {N|i ≤ n}, respectively. Equation (15) indicates that the relative
standard uncertainty increases with every step-down mass�ow compared to
the preceding step; the absolute standard uncertainty decreases vice versa
(view eq. 15). The ratio of the corresponding expanded uncertainties coin-
cides with the right-hand side of latter equation consequently.

1We use this uncertainty proportion to account for any deviation from ideal measure-
ment conditions [2] (e.g., uM = (0.25 . . . 1.00%) · (ρQ)).



10th IGHEM Conference, Itajubá/Brazil, September 16 - 19, 2014 6

Example We want to apply n = 4 equidistant mass�ow steps from (ρQ)1

to zero �ow on the basis of (10). Assuming a relative expanded uncertainty of
U [(ρQ)4]/(ρQ)4 = 2.00% (k = 2) for the �nal mass�ow before zero �ow, we
can expect expanded uncertainties for the other mass�ow values according
to table 1.

Table 1: Expanded uncertainty (k = 2) of mass�ow values using equation (15)

i 1 2 3 4

Eq. (15)
√

4
√

3
√

2
√

1
U [(ρQ)i]

(ρQ)i
1.00% 1.15% 1.41% 2.00%

Although higher mass�ows really tend to lower relative uncertainty val-
ues, the estimation of u(B)/(ρQ) requires an individual numerical treatment
for each step.
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Nomenclature

Symbol Description Unit

A Cross-section (m2)
B Integration area (Pa·s)
F Pipe factor (1/m)
k Coverage factor (e.g., k = 2 for con�dence level 95%) (-)
ρq Leakage mass �owrate (kg/s)
ρQ Mass �owrate (kg/s)
n Number of mass�ow steps (-)
pG Gibson (di�erential) pressure (Pa)
pRL Running line pressure (Pa)
pSL Static line pressure (Pa)
q Leakage volume �owrate (m3/s)
Q Volume �owrate (m3/s)
Re Reynolds number (-)
t Time (s)
u Standard uncertainty (a.u.)
U Expanded uncertainty (= kuc) (a.u.)
uc Combined standard uncertainty (a.u.)
uM Standard deviation accounting for the measurement con-

ditions (= (0.25 . . . 1.00%) · (ρQ))
(kg/s)

α Velocity pro�le coe�cient (≈ 1) (-)
ζ Loss coe�cient (-)
µ Dynamic viscosity of water (Pa·s)
ρ Water density (kg/m3)
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