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Abstract

The acoustic transit time (ATT) method is commonly used to mea-
sure volume �ow rates of liquid and gaseous media. We therefore
determine axial planar mean velocities at certain elevations within a
measuring section and integrate them over the corresponding wetted
cross-section of the conduit. I provide evidence that the commonly
used acoustic arrangement with symmetric crossed paths represents a
very special case of a general multi-path setup. This new approach is
confronted with the widely used ray tracing approximation. It gives
rise to statistical uncertainties of the planar velocity parameters which
have not been taken into account so far by any standard test code.
Furthermore, it o�ers new innovative possibilities like close-by arrange-
ments which seem to produce more reliable results in sections with
local �ow anomalies.
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1 Introduction

Several international or national test codes accepts already the acoustic
transit-time method (ATT) as a method for absolute �ow measurement, for
instance [1, 2]. We expect the integration of this measurement technique into
the main part of the test code IEC 60041 in the upcoming revision within the
next few years. That is, we will face a high boost of temporary or stationary
ATT installations on site for hydraulic e�ciency testing.
ATT systems feature high precision in repeatability and reproducibility and
thus represent a powerful device with very low measurement uncertainty af-
ter in-situ calibration. Good repeatability and reproducibility are desirable
properties for a �ow metering device but they do not lead to low uncertain-
ties for non-calibrated installations consequently. It has often been stated in
literature but it is worth repeating it: the terms precision and uncertainty do
not mean the same [3]. The community of hydraulic engineering has gained
great practical experience since 1991, when the last revision of the IEC 60041
test code was issued [4]. We notice re�nements in theory especially in using
�ow integration procedures, which are closer to physical reality [5, 6], and in
accounting for sensor protrusion [7]. Pairs of axisymmetric, crossed chordal
paths have established to be the standard to diminish the negative impact
of cross �ow. However, the application of crossed paths demonstrates only
a special case of two paths in an axially parallel acoustic plane. A recently
published article uses a statistical approach to determine the propagation
velocity of an acoustic pulse between sensor pairs [8]. It reveals:

1. A number of n ≥ 2 paths per axially parallel plane is required to obtain
a statistical quanti�cation of contributing planar velocity parameters
ci, v‖,i and v⊥,i denoting the mean values at plane i of the speed of
sound, the axial velocity and the transveral velocity, respectively.

2. We cannot access the impact of any cross �ow if we use only a single
acoustic path per plane. This type of arrangement should therefore
never be used for guarantee veri�cations.

3. We conclude from point 1 that the statistical approach assigns random
uncertainties to the planar velocities which have not yet been taken
into account when estimating the uncertainty of the �ow rate.

4. The alternative approach reproduces the velocity formula for crossed
paths, which is commonly used.

5. When using an axisymmetric crossed path arrangement; the inclination
angle ϕ = π/4 exhibits the lowest random uncertainty.
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6. Furthermore, we deduce from point 1 that the 2-path or the multi-
path ensemble in close-by arrangement can be favorable in presence of
asymmetric �ow pro�les.

With this paper I want to give a more detailed look in comparing the stan-
dard crossed path arrangement with the proposed close-by arrangement from
a statistical point of view. So, we can gain information of the individual
strengths and weaks.

2 Theoretical background

2.1 Ray tracing approach

The usual planar velocity equations given in various test codes are based on
a ray tracing approximation [9]. It should be noted that such an approxi-
mation is only valid if the wave length of the propagating acoustic pulse is
small compared to the beam width and the beam width is small compared
to the pipe dimensions [10]. Both criteria are usually satis�ed for testing
large-scale hydraulic machines. Here, I give a survey in the derivation of
the velocity equations in using two (2) paths arbitrarily aligned within the
same acoustic plane. At the end, we will see that the determination of the
axial velocity with the metrological instrumentation commonly in use is only
accessible with several simpli�cations of our physical system.
Figures 1(a) and 1(b) illustrate the de�nition of the main geometric parame-
ters. Here, we focus �gure 1(b) for the subsequent derivation of the velocity
equations in using two (2) paths arbitrarily aligned within the same acoustic
plane. The origin of our two-dimensional Carthesian coordinate system (0|0)
is equal to the location of sensor 1 on the left conduit wall, the positive di-
rections of x and y-coordinates are de�ned from bottom to the top and from
left to the right, respectively. The positive direction of axial �ow and trans-
verse �ow are de�ned analogously. Let us start in considering the physical
conditions of a sensor pair forming path no. 1. An acoustic pulse is emitted
from the sensor on the left under an central angle of ϕ1L, which is generally
not ident with ϕ11, and detected by the sensor on the right.

Simpli�cation I The �ow of the �uid is stationary.

Simpli�cation II The acoustic pluse propagates only on the
x-y-plane.

Simpli�cation III The speed of sound c remains constant along
the acoustic path.
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(a) Theoretically ideal acoustic path
(gray dashed line), parallel velocity v‖,
perpendicular velocity v⊥, acoustic path
length Li, left path angle ϕi1 with re-
spect to the conduit axis, right path an-
gle ϕi,2 = ϕi1 + π (source: [8]).

(b) Real path geometry projected onto
the two-dimensional plane (exaggerated
representation): Path of downstream
travelling acoustic pulse (red), path of
upstream travelling pulse (green), cen-
tral emitting angles of acoustic power,
ϕiL and ϕiR.

Figure 1: Geometry of an acoustic path no. i inside the conduit
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With the simpli�cations above the velocity at time t of the downstream
travelling pulse yields(

wx(t)
wy(t)

)
= c

(
cosϕ1L

sinϕ1L

)
+

(
v‖(x(t), y(t))
v⊥(x(t), y(t))

)
. (1)

Integration between zero time and the measured average travelling time
τ̂11 gives the position vector

L1 ·
(

cosϕ11

sinϕ11

)
= τ̂11 · c

(
cosϕ1L

sinϕ1L

)
+

τ̂11∫
0

(
v‖(x(t), y(t))
v⊥(x(t), y(t))

)
dt . (2)

Equation (2) reveals the main drawback of the ATT method what makes
us going round in circles: A proper calculation of the mean velocity pa-
rameters requires the knowledge of the available velocity distribution. We
therefore simplify the circumstances with

Simpli�cation IV The averaged �ow �eld is approximated by

(
v‖
v⊥

)
≈ 1

τ̂11

τ̂11∫
0

(
v‖(x(t), y(t))
v⊥(x(t), y(t))

)
dt

which facilitates (2) to

L1 ·
(

cosϕ11

sinϕ11

)
= τ̂11 ·

[
c

(
cosϕ1L

sinϕ1L

)
+

(
v‖
v⊥

)]
. (3)

We conclude, from a mathematical point of view, that the four (4) un-
known variables in the two (2) equations above represent an under-determined
system of nonlinear equations. We require additional information (equations
and/or side conditions) to solve our problem. Let us continue to the upstream
propagating conditions where a similar approach yields

−L1 ·
(

cosϕ11

sinϕ11

)
= τ̂12 ·

[
c

(
cosϕ1R

sinϕ1R

)
+

(
v‖
v⊥

)]
. (4)

The new system of equations is still under-determined (5 unknown variables
versus 4 equations). It can be solved exactly only if one unknown parameter
can be estimated with appropriate accuracy.1 However, a proper approach

1A usual way is to neglect the transversal �ow v⊥ in presence of excellent parallel in�ow
conditions.
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requires an additional sensor pair forming path no. 2. We handle the problem
with a generally orientated planar inclination angle ϕ21 6= ϕ11, which gives
us subsequently two (2) new unknown variables and the following four (4)
new equations

L2 ·
(

cosϕ21

sinϕ21

)
= τ̂21 ·

[
c

(
cosϕ2L

sinϕ2L

)
+

(
v‖
v⊥

)]
and (5)

−L2 ·
(

cosϕ21

sinϕ21

)
= τ̂22 ·

[
c

(
cosϕ2R

sinϕ2R

)
+

(
v‖
v⊥

)]
. (6)

That is, we end up with seven (7) unknowns in eight (8) equations, which
represents an over-determined system of nonlinear equations. This system
cannot be solved exactly but approximately yielding a not evident but com-
monly used equation for the axial velocity

v‖ =
L1 sinϕ21

(
1
τ̂11
− 1

τ̂12

)
− L2 sinϕ11

(
1
τ̂21
− 1

τ̂22

)
2 (cosϕ11 sinϕ21 − cosϕ21 sinϕ11)

(7)

Remarks

• Equation (7) is the result of several simpli�cations done dur-
ing the whole derivation processus and it is an approxima-
tion of the mathematically exact solution. A (random) ex-
panded uncertainty t · u(v‖) with df = 8− 7 = 1 statistical
degrees of freedom has to be assigned to the axial velocity
value but has never been treated by any standard test code.

• We could construct an analytically exact solution of the ax-
ial velocity (6 unknowns versus 6 equations) in omitting two
equations of any path along a distinct acoustic direction, for
instance, we put away the equations given in (5). Permuting

the set of equations yields consequently

(
4
3

)
= 4 di�erent

values of the axial velocity. The mean value of those re-
sults may be considered as �nal parameter estimate with
df = 4− 1 = 3, i.e., we obtain again an additional uncer-
tainty of random nature. However, equation (7) generally
yields more reliable results since measurement errors do not
impact that hard on the calculation procedure. In fact, I
have never seen any testing using such an approach.
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2.2 Statistical approach

The theoretical approach described in reference [8] uses the approximation
of the propagation velocity of an acoustic pulse emitted by sensor j which
travels along the theoretical path i to the opposite sensor

Li
τ̂ij
≈ c+ cosϕij · v‖ + sinϕij · v⊥ (8)

The parameters Li and τ̂ij denote the planar distance between the relevant
sensor pair and the mean propagation time between these sensors. The in-
clination angle ϕij is de�ned in accordance with �gure 1(a). For each path
in the same acoustic plane we obtain two equations when using forward and
backward propagation between the pair of sensors. An equiweighted linear
regression yields for the axial velocity

v‖ =
1

N
·

[(
L · cosϕ

τ̂

)
· sin2 ϕ−

(
L · sinϕ

τ̂

)
· cosϕ sinϕ

]
(9)

with

N = cos2 ϕ · sin2 ϕ− cosϕ sinϕ
2
. (10)

In this paper, the average value of any function f(x) is denoted by f(x)
which is the arithmetic mean over the two indices i and j

f(x) =
1

2n

n∑
i=1

2∑
j=1

f(xij) (11)

However, the standard uncertainty of the axial velocity gives

u(v‖) = s ·

√
sin2 ϕ

2nN
(12)

with the standard uncertainty of the measured propagation velocity with
respect to the regression model function, s, obtained from

s2 =
2n

2n−m

{(
L

τ̂

)2

−
(
L

τ̂

)2

− 1

N

[(
L · cosϕ

τ̂

)2

· sin2 ϕ

+

(
L · sinϕ

τ̂

)2

· cos2 ϕ− 2

(
L · cosϕ

τ̂

)
·
(
L · sinϕ

τ̂

)
· cosϕ sinϕ

]}
.

(13)

We denote the number of paths in the same acoustic plane by n, the
number of regressors m = 3.
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(a) General arrangement
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(c) Close-by arrangement

Figure 2: Geometry of arrangements with two planar paths (source: [8])

2.2.1 Two-path arrangement

We obtain for two paths per plane, i.e., n = 2, in the general case (view �gure
2(a))

v‖ =
L1 sinϕ21

(
1
τ̂11
− 1

τ̂12

)
− L2 sinϕ11

(
1
τ̂21
− 1

τ̂22

)
2 (cosϕ11 sinϕ21 − cosϕ21 sinϕ11)

(14)

and

u(v‖) =

√
sin2 ϕ11 + sin2 ϕ21

2
√

2| cosϕ11 sinϕ21 − cosϕ21 sinϕ11|

·
∣∣∣∣L1

(
1

τ̂11
+

1

τ̂12

)
− L2

(
1

τ̂21
+

1

τ̂22

)∣∣∣∣ , (15)

The symmetric case (�gure 2(b)) simpli�es the equations above. The in-
clination angle of the second path yields ϕ21 = π − ϕ11, and the axial velocity
is

v‖ =
L1

(
1
τ̂11
− 1

τ̂12

)
− L2

(
1
τ̂21
− 1

τ̂22

)
4 cosϕ11

(16)
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parallel
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Figure 3: Geometry of multiple acoustic paths in close-by arrangement: This ex-
ample shows n1 = 3 sensors on the left and n2 = 2 sensors on the right spanning
an acoustic plane with n = 6 paths (source: [8]).

and the corresponding standard uncertainty

u(v‖) =

∣∣∣L1

(
1
τ̂11

+ 1
τ̂12

)
− L2

(
1
τ̂21

+ 1
τ̂22

)∣∣∣
4| cosϕ11|

,

(17)

Finally, when applying close-by arrangements, where (ϕ21 = ϕ11 + ∆ϕ)
with |∆ϕ| � π/2, we obtain

v‖ =
1

2 sin ∆ϕ

[
L1 sin(ϕ11 + ∆ϕ)

(
1

τ̂11
− 1

τ̂12

)
− L2 sinϕ11

(
1

τ̂21
− 1

τ̂22

)]
(18)

and

u(v‖) =

√
sin2 ϕ11 + sin2(ϕ11 + ∆ϕ)

8 sin2 ∆ϕ
·
∣∣∣∣L1

(
1

τ̂11
+

1

τ̂12

)
− L2

(
1

τ̂21
+

1

τ̂22

)∣∣∣∣ .
(19)

2.2.2 Multi-path arrangement

Reference [8] reveals that under constant measurement conditions, the ex-
panded uncertainty, t · u(v‖), diminishes only with a higher number of paths
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n, which reduces the standard deviation u(v‖) ∝ 1/
√
n and also the Student's

t-value (df = 2n−m). Therefore, using more than two planar paths is rec-
ommended whenever test code requirements in terms of �ow conditions and
geometry are not met.

The fact that sensors emit the main portion of the acoustic energy in
a cone opens up an interesting way of using multiple paths in a close-by
arrangement. Sensors can be positioned on opposite conduit walls as depicted
in �gure 3. Then, each detector on the right is able to receive non-re�ected
signals from all emitters on the left and vice versa. That is, all sensors on
one wall are within the visual �eld of the sensors on the opposite wall. With
n1 as the number of sensors on the left and n2 as the number of sensors on
the right, the total number of acoustic paths is

n = n1 · n2 (20)

3 Discussion

In the following subsections we consider a homogeneous �uid under global
stationary �ow conditions con�ned by parallel conduit walls. There we dis-
cuss the advantages and drawbacks of the individual path arrangements. We
assume an axial velocity distribution, which does not alter within the acoustic
measurement section.

3.1 A word on the stationarity of �ow

The examination of a stationary �ow has been the �rst simpli�cation in
deriving the ray tracing approximation in section 2.1. It also represents the
crucial criterion for the measurement quality using the statistical approach.
Imagine an time variant �ow behavior, then it makes no big di�erence which
path arrangement is used since the individual paths and path directions can
only to be sampled successively using state-of-the-art technology.

3.2 Negligible cross �ow conditions and negligible local

�ow anomalies

It is a given that under such hydraulically favorable conditions the symmetri-
cal arrangement with crossed paths under ϕ? = π/4 exhibits the best vector
resolution and thus the lowest random uncertainty. I do not expect any other
double-path arrangement to deliver more accurate measurement results.
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3.3 Constant cross �ow conditions and negligible local

�ow anomalies

If the transveral �ow drift could be considered as globally constant (within
the measurement section) the symmetrical, crossed paths are to favor in con-
trast to the close-by arrangement. Since we desist from any impact of locally
existing �ow phenomena, both paths face equal ratios of v‖(x, y)/v⊥(x, y) =
v‖(y)/v⊥(y) independent of the x-coordinate. Nevertheless, constant planar
cross �ow conditions are atypical and seldom.

3.4 Negligible cross �ow conditions and non-negligible

local �ow anomalies

It may happen that the local �ow behavior changes signi�cantly in the wake
of a sensor. The signal from or to another downstream mounted sensor can
hence be a�ected. However, such an e�ect seems to impact the measurements
only at high dimensional ratios (sensor size)/(conduit width). Symmetric
crossed paths are to favor.

3.5 General cross �ow conditions with or without local

�ow anomalies

These �ow conditions represent by far the most frequent case since design
engineering and metrological engineering do not harmonize per de�nition. As
a consequence of this, if we strictly obeyed the recommendations of the test
codes (i.e., straight and uniform length > 10D upstream and > 3D down-
stream the measurement section [4]), hardly any measurements could be
done in accordance with the code. Despite of a non-changing axial velocity
distribution the ratio v‖(x, y)/v⊥(x, y) clearly shows a dependency on the
x-coordinate. That is, the larger the angular o�set between both paths � as
typical for symmetrical crossed paths � the bigger the negative impact of the
non-axial �ow conditions on the measurement quality. The application of a
close-by arrangement reveals here advantages when considering here the �ow
ratio v‖(x, y)/v⊥(x, y). We may assume that both paths face almost identical
�ow conditions, i.e., v‖(x, y)/v⊥(x, y) ≈ v‖(y)/v⊥(y) as under the constant
cross �ow conditions. Despite of the poorer vectorial resolution reliable mea-
surements can be expected with close-by paths even under unfavorable �ow
conditions. If higher resolution and low random uncertainty are required a
multipath arrangement as described in section 2.2.2 will be the right choice.
The path limitations are normally set by �nancial aspects in using a higher
number of sensors and additional installation time.
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4 Conclusion

The determination of the planar axial velocity using two di�erent approaches
have been compared with (i.e., ray tracing approximation versus statistical
approach). Both procedures yield identical equations for general two-path
arrangement and give rise to an additional random uncertainty, which �-
nally impacts the uncertainty estimation of the volume �ow rate. I propose
the implementation of this contributing uncertainty proportion into the up-
coming revisions of relevant international standard test codes as it is IEC
60041. The behavior of symmetrical crossed path arrangements and close-
by/multipath arrangements have been discussed showing clear advantages of
the latter under stationary but non-favorable �ow conditions.
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Nomenclature

Symbol Description Unit

c Speed of sound (m/s)
D Characteristic conduit width m
df Statistical degrees of freedom (-)
Li Minimum distance between both sensors of path i (m)
m Number of regressors (= 3) (-)
n Number of paths in the same plane (-)
s Standard uncertainty of the measured propagation veloc-

ities with respect to the linear regression model function
(m/s)

t Time (s)
u Standard uncertainty (a.u.)
v‖ Mean axial velocity (m/s)
v⊥ Mean transversal velocity (m/s)
w Velocity of the acoustic pulse (m/s)
τ̂ij Mean transit time of acoustic pulse along path i emitted

from sensor j based on m observations (=
m∑
k=1

τi,j(k)/m)

(s)

ϕij Inclination angle of path i with respect to the conduit
wall of sensor j (clockwise rotation)

(rad)
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