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ABSTRACT

Full measurement result is a set of quantity vahesg attributed to a measurand together withaahgr
available relevant information. According to VIM][d& measurement result is generally expressedmg) e
measured quantity value and a measurement undgrtain

International comity for hydraulic efficiency measment published a widely used international c&tie |
60041:1991 [2]. It is dealing with hydraulic effigcicy measurement which in Appendix A presents an
evaluation of systematic uncertainties at measunétak&en at steady state conditions. While the ctales
basic formulas for uncertainty calculations it does state the basics and theory on how to detect t
uncertainty evaluation equations for setup diffetean those presented in the code.

In recent years new standards on measurement aimtgntocabulary and assessment have been published
from the Joint Committee for Guides in Metrology.

Hydraulic efficiency measurements are generallyuatad by a set of independent (uncorrelated) nmedsu
guantities, such as pressure or head measurerdatisarge, temperature and generator power. Therefo
as the purpose of this paper is uncertainty assagswh hydraulic efficiency measurements, the paper
focuses mainly on combined uncertainty theory malependent and uncorrelated measurements.

Based on GUM [3], effective and readable methodietuct equations for systematic measurement
uncertainty evaluation is presented.

1. EVALUATION OF MEASUREMENT UNCERTAINTIES

Uncertainty of measurement is a parameter, associgith the result of a measurement, that chaiaeter
the dispersion of the values that could reasonadlgttributed to the measurand [4]. It is undedthat the
result of the measurement is the best estimateeofdlue of the measurand.

The uncertainty in the result of a measurementgdigeonsists of several components which may be
grouped into two categories according to the waytiich their numerical value is estimated [5]:

A. those which are evaluated by statistical methods

B. those which are evaluated by other means.

The components in category A are characterizedtandstimated by the number of degrees of freedom.
general, where appropriate the covariance shostdta given.



The components in category B should be charactebgaerms, which may be considered approximations
to the corresponding variances, the existence aflwik assumed.

In laboratory and engineering practice, many plalsicantities are, indirectly measured, by expigiti
functional relations that connect them to otheeclly measured quantities [6]. With other wordsljriectly
measured values are calculated with combining seustividually performed measurements.

It is obvious that uncertainties of the combinedifiectly measured values would in praxis not bduatad
by statistical methods (Type A), but are evaluatahbining type B estimated individual measurement
uncertainties.

1.1. Origin of the type B estimated uncertainties - Sers uncertainty

To measure individual quantities, sensors and di#ses's (in continuation called sensors) are usach E
sensor that can be purchased on market comesengiosspecifications. The sensor specificationainst
data about sensor accuracy, repeatability, temyeratfluences, time drift etc.

Usually all datasheets state also a value thaésept all uncertainty effects, however differentiiaology
is used among the suppliers. The value represealingcertainty effects may be called expected
uncertainty, precision, sensor performance, orthgraterm. It is important that measurement enginee
understands the meaning of the stated combinedaeaistic, which may refer to absolute or relative
uncertainties stated for sensor range (full scaeetimes stated &S).

For hydraulic efficiency measurements the biggealpm represents measurement of flow for which
absolute uncertainty exceeds +0,5% and can raise 6 for some measuring method [2]. By evalugtin
combined measuring uncertainties we can conclidé uncertainties smaller than £0,2% contributitie i
to the final uncertainty, thus indicating that mprecise uncertainty evaluation of individual measwents
iS unnecessary.

For each individual measurement individual senbaracteristics may be taken in account, howeveesin
todays sensor uncertainties are usually equalteeritean +0,2%FS, it hardly makes any sense to put
tremendous effort in getting better uncertaintynestion.

2. THEORY ON THE COMBINED UNCERTAINTY EVALUATION

2.1. General theory on the combined uncertainty evaluatin

In general we shall assume that measured quantiag<e correlated. Assessment of combined unogytai
when quantities correlated is in general evaluagedccording to GUM [3]:
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C.. Sensitivity coefficient, ¢, = 0f /9

u(x) ... Standard uncertainty of variabk

r(x,x;)...  Correlation factor between variabl&s and X;

For a special case where all quantities are unetes meaning that correlation coefficients areattp
r(x,%;) =0, the equation simplifies to
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There is inconsistency between the usage of ddsgrfar uncertainty terms between GUM and IEC 6D04
[2]. Since traditionally IEC designations are widaked in uncertainty evaluations in hydrauliceéncy
measurements, IEC designations will be used itetkte

2.2. Combined uncertainty evaluation for uncorrelated urcertainty contributing variables

It has been explained that in hydraulic efficienogasurements mostly all measured quantities are
uncorrelated or correlation factors are close am@ as such assumed as uncorrelated. In thiserpsatjon
(2) may be used for combined measurement uncertevatiuation.

2.2.1.Absolute uncertainty €, of the measured Variable X

Measurements are to be expressed gt OX , where X is central measured value ad¥ is absolute
uncertainty which has the same dimension as theateneasured value [6]. According to IEC60041, the
absolute uncertainty is marked @s.

Example - Pressure measurement result with itsanement uncertainty is put down as:

p=p, *e, = 415bar + 005bar ®3)

2.2.2.Combined absolute measurement uncertaintg. of the measured combined variablé

For the functior which is combined afindependent (uncorrelated) variabesthe evaluated combined
absolute uncertainty can be expressed as:

(4)

whereF = f (X, X,,X5,....).



2.2.3.Relative measurement uncertainty f, of the measured variable X:

The quality of a measurement cannot be solely deted by its absolute uncertainty Eor example, an
absolute uncertainty e 1mm has different meaning when referring torgth X% =1 cm or to a length o<
10 m.

The quality of a measurement is better expressdateogelative uncertainty which is expressed asetibn
between the absolute uncertaily and absolute value of measured value X:
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The smaller the relative uncertainty is, the higherquality of the measurement. By definition, thkative
uncertainty is always a dimensionless quantity [6].

2.2.4.Combined relative measurement uncertainty for uncorelated variables X

fe =,/Zfi2 1l (6)

whereF = f (X, X,,Xs,....) andf; is evaluated uncertainty of the independent vagiapl

2.3. Deduction of equations for the evaluation of combiad measurement uncertainty for
uncorrelated variables

2.3.1.Function F is a multiplication or division of independent variables

Let's assume a function F which is a product of ta@ependent (uncorrelated) variables A and B:
F=AIB (7)

According to equation (4), the combined measurempsoertainty is:
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After solving the partial derives, the equationdombined absolute uncertainty becomes:
€ = \/(B @A)Z + (A@B )2 ©)

If we use equation (9) for absolute measuremengr@ioty of the combined variable F and divideyitits
absolute value, than we get the combined relatineeainty as:
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If individual absolute measurement uncertaintieared @ are calculated from the expected relative
measurement uncertainty of the used equipment lmaseduation (5), than the combined relative
uncertainty can be written as:

2 2
. =\/(713Amj +(%D‘B [Bj N (12)

This mathematical example shows that combinedivelancertainty of two products of two independent
variables can be calculated as the square rootstite sum of squares of individual variables.

When function F, is combined from product of indegent variablesx as:

F=x 5 0..% (12)

than combined uncertainty can be in general form written as:

fF=/§;ﬂ2 (13)

Deduction for fractional functions (not presentedhis paper) shows that principle from equatids) dan
exactly be used for evaluation of combined relatimeertainty of the fractional functions.

2.3.2.Function F is an addition or subtraction of indepemlent variables

Let's assume a function H which is a sum sevedgpendent (uncorrelated) variables hi:

H=h+h+...+h (14)
According to equation (4), the combined measuremeaogrtainty is:
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If we solve partial derives and use equation (9 way to deduct relative measurement uncertaaty tve
receive

fi =5 - \/(hl Dchl)2 +(h, D:hz)z +...+(h thi)2 (16)

H h+h,+..+h

With further deduction the equation becomes:
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For a function H which is a sum several indepen@@mtorrelated) variablds

H=>h (18)




the general formula for evaluation of combined @ied) relative uncertainty is:

f, = z{%{%jz (19

2.3.3.Function F is a combined from independent variablesvhere one of the variables is powered

Let’'s assume a function F which is a product sdvedependent (uncorrelated) variables hi:
F=A"[B (20)

According to equation (4), the individual measuramencertainty of the ternd\"is:
oF

T

(21)
After solving the partial derives, the equationdombined absolute uncertainty becomes:
e, =BMh A" [, (22)

If we use equation (9) for absolute measuremergrtgioty of the combined variable F and divideyitts
absolute value, than:
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When absolute uncertaingy is calculated from the expected relative measunénnegcertainty of the
equipment based on equation (5), than the relatieertainty can be written as:

1
fn=ZmeAD°\ (24)
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After we reorder equation (24) we receive genarahfila for evaluation of the relative uncertainty o
powered term:

f.=nlf, (25)

A

2.3.4.Function F is a multiplication or constant and measred variable

F=k (A (26)
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When measured variable is multiplied by a constanglative or an absolute uncertainty of the fiomcis a
multiplication of variable uncertainty.

3. METHODOLOGY FOR SIMPLIFIED DEDUCTION OF EQUATIONS F OR
MEASUREMENT UNCERTAINTY EVALUATION

Let's consider some example equation of efficiemgasurement by ultrasonic measurement. We assume
that all variables are independent:

= Pt = Pgen/”gen
p@DHnl:(Dt ,OEQ[ﬂHl‘Hz)[Q

n, (29)

To evaluate measurement uncertainty GUM proposealtalate sensitivity coefficients for each

measured quantities and calculate combined unogrtaccording to eq (2). However for complex equadi
this method can be as first mathematically demandimd presentation of partial results difficult i

results would in equation (29) refer to uncertaioftyR and H,, . Note that calculation sensitivity coefficient
only represents a sensitivity or influence of gaitr measured quantity on the final result.

We propose that a process of equation deductibetter to be done in sequence, where we separately
evaluate and combine uncertainties for each partezfsurement and calculation.

To evaluate measurement uncertainty we proposset@methodology of “Order of mathematical
operations’ know in mathematics as arithmetic precedenceirSa,same way as we start calculating above
example as (HH,) in the first step, we would also start determinimcertainty of measurement of net head
(H;-Hy). In second step we would calculate uncertaintijoo¥ measurement and so on. The idea is, trat if
part of equation represents some physical valke H, in eq. (29) does), we would like to present ibur
assessment of measurement uncertainty.

Once we know where to start, we continue by deduncif the equation parts. The deduction of equatfon
uncertainty evaluation can be performed as follaepending of the pattern of analyzed portion ef th
equation:

a.) X=A1+ A2 + ... - for uncertainty evaluation use rule (19)

b) X=A1*A2*... - foruncertainty evaluation use rule (13)

c) X=A" -> for uncertainty evaluation use rule (25)

d.) X =k*A -> for uncertainty evaluation use rule (28)



3.1. Uncertainty assessment example

Consider measurement of turbine efficiency for kaplnit:
- Flow is determined by Winter Kennedy method; spitase pressure difference at Winter-Kennedy pressu

taps AP, is measured by 0+0,5bar differential meter, witlatree uncertainty f=0,2% FS.

- Net head is measured as a level difference betWéeand H2 taking into account the dynamic heads at
measured points:

0 H1is measured by pressure transducer (0O+1bar,1520 FS) installed behind trash-racks;
measuring crossection A2 estimated at f =£10%

0 H2 is measured by Plant measurement with checkeertainty of e=+5cm (taking into account
waves at tail-water level); measuring crossecti@meétimated at f =+5%

- Generator power is measured by means of elecp@makér measurement using current and voltage
transformers, both class 0,5%; power meter unceytés f=+0,2% on measured value.

- Turbine power is measured as generator power ggingrator efficiency characteristic (estimated viagaty
at f=+0,2%); Generator bearing losses are includelde generator efficiency characteristic. Turbgugde
bearing losses are estimated by calculation wiffeeted uncertainty f=+25%.

- Uncertainties in water density as well as grawitgtér are neglected.

Uncertainty assessment for turbine efficacy id firgided into separate analysis for uncertaintieow,
head and turbine power.

According to IEC60041:1991, the flow measuremereutainty by Winter-Kennedy (WK) is estimated to
be f=~+1,5%; Therefore we can assume that uncéytafrdetermining of WK constants (k and n) is
estimated to be within f = +1 5%. Flow uncertairgyhan evaluated using eq. (25), and simplificafar
WK uncertainty estimate:

Q=k [Dp," (30)

fQ: \/n ijdp\/\/K ’ + fWKconst2 (31)

Whenever values are measured by a transducerahatahrelative uncertainty characteristic statedpared
to full scale range (FS), first absolute measurdrransducer uncertainty is to be determined aed th
compared to the measured value. By following theeedure, relative uncertainty of the measurenart
is calculated. In the Table 1, the measurementrtainges of differential pressudpy and intake pressure
behind trashrackg.w. are evaluated.

In H, uncertainty evaluation, first Static Head and tbgnamic heads are evaluated.
Net head is determined as:

Hy =Hga + Han = (Hgan = Haao) + (Hoym = Hopno) (32)

Dynamic head is calculated at measured pointdésileded using discharge and known area, and so:
H, =H g + Hyp = (HWL, -TWL) +(Q2 729 /A +1/ A2) (33)

Net head uncertainty evaluation in three steps:

_ 2 2
P = L 0 R (34)




.I:den — \/2 DfQZ + (deﬂl meAlz + Hdyn2 meAZZ) (35)

Hdyn Hdyn

f, =y ™ 2 (36)

n Hn Hn Hdyn

Developed example of turbine efficiency procedsrpresented in Table 1.

f, =y fg By P+ £

(37)



Table 1 — Measurement uncertainty evaluation exampl

Measure ment point

1 2

designation uncertainty (+-)
Flow:
Differential pressure
relative uncertainty pressure gauge relative uncertainty fdp % 0,2
/ dp gauge meter range r_dp mbar 250
absolute uncertatinty:  absolute uncertainty e dp mbar 05
/ measured dpWK dpWK  mbar 110
relative uncertainty uncertainty of dpWK f dpWK % 0,45
Flow
relative uncertainty Winter Kennedy constants estimation uncertatinty kcovist % 1,50
/ Winter Kennedy exponent factor n / 0,500
relative uncertainty Flow e stimation uncertainty fQ % 1,53
Net Head measured values: Hn m 15,6
Intake level
/ pressure gauge range r_p_HWL bar 1,6
relative uncertainty pressure gauge uncertainty f_p_HWL % 0,15
absolute uncertatinty:  high water level after trashracks e HWLtr m 0,024
Static Head Hstat m 15,3
relative uncertainty high water level after trashracks (compar. to H f HWL_tr % 0,16
absolute uncertatinty:  tail water level e TWL m 0,05
relative uncertainty tail water level (comparing to Hstat) fTWL % 0,33
relative uncertainty static head (compared to Hn) f Hstat(Hn) % 0,36
Dynamic Head Measured dynamic head Hdyn m 0,20
Measured dynamic head at point 1 Hdynl m 0,32
Measured dynamic head at point 2 Hdyn2 m 0,12
relative uncertatinty: Al crossection estimation fAL % 10,0
relative uncertatinty: A2 crossection estimation f Al % 50
relative uncertatinty:  flow measurement fQ % 153
relative uncertatinty:  dynamic head (comparred to Hn) f Hdyn(Hn) % 0,24
Net Head
relative uncertainty Net Head fHh % 0,43
Turbine power measurement Pt MW 25,00
Generator power
relative uncertainty Power meter uncertainty f P % 0,20
relative uncertainty Voltage transformer class fCT % 0,50
relative uncertainty Current transformer class fPT % 0,50
relative uncertainty Generator power f Pgen % 0,73
relative uncertainty generator efficiency uncertainty estimation feeng % 0,20
Bearing losses TB loss kW 15,00
relative uncertainty turbine bearing losses estimation f TB loss est % 25,00
relative uncertainty turbine bearing losses calculated for Pt f_ TB loss % 0,02
Turbine power
relative uncertainty Turbine power fPt % 0,76
Hydraulic efficiency eta_t %(rel) 93,40
relative uncertainty turbine efficiency fetat % 1,77
absolute uncertainty  turbine efficiency e_eta_t %(abs) 1,65




4. CONCLUSIONS

Methodology presented in this paper offer simpléhoe for deduction of equations for evaluation of
relative measurement uncertainty for variables doptbby independent (uncorrelated) individual
measurements. Methodology showed to be usefuirfls as well as complex variable equations.

By performing measurement uncertainty evaluatiopdnyial evaluation as per presented methodology,
individual contributions of certain parts on thentbned uncertainty can be evaluated and preseritesl.
way of uncertainty analysis can highlight partd theve most influence on the measured result wikieh
basis for evaluation of possible and meaningfulrmpments for achieving lower measurement uncéytain
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