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ABSTRACT 
 

Full measurement result is a set of quantity values being attributed to a measurand together with any other 
available relevant information. According to VIM [1] a measurement result is generally expressed as a single 
measured quantity value and a measurement uncertainty.   
 
International comity for hydraulic efficiency measurement published a widely used international code IEC 
60041:1991 [2]. It is dealing with hydraulic efficiency measurement which in Appendix A presents an 
evaluation of systematic uncertainties at measurement taken at steady state conditions. While the code states 
basic formulas for uncertainty calculations it does not state the basics and theory on how to deduct the 
uncertainty evaluation equations for setup different than those presented in the code. 
 
In recent years new standards on measurement uncertainty vocabulary and assessment have been published 
from the Joint Committee for Guides in Metrology.  
 
Hydraulic efficiency measurements are generally evaluated by a set of independent (uncorrelated) measured 
quantities, such as pressure or head measurements, discharge, temperature and generator power. Therefore, 
as the purpose of this paper is uncertainty assessment of hydraulic efficiency measurements, the paper 
focuses mainly on combined uncertainty theory for independent and uncorrelated measurements.  
 
Based on GUM [3], effective and readable method to deduct equations for systematic measurement 
uncertainty evaluation is presented. 

 
 

1. EVALUATION OF MEASUREMENT UNCERTAINTIES 

Uncertainty of measurement is a parameter, associated with the result of a measurement, that characterizes 
the dispersion of the values that could reasonably be attributed to the measurand [4].  It is understood that the 
result of the measurement is the best estimate of the value of the measurand. 

The uncertainty in the result of a measurement generally consists of several components which may be 
grouped into two categories according to the way in which their numerical value is estimated [5]: 

A. those which are evaluated by statistical methods, 
B. those which are evaluated by other means. 

 
The components in category A are characterized and the estimated by the number of degrees of freedom.  In 
general, where appropriate the covariance should also be given. 



 
The components in category B should be characterized by terms, which may be considered approximations 
to the corresponding variances, the existence of which is assumed.   
 
In laboratory and engineering practice, many physical quantities are, indirectly measured, by exploiting 
functional relations that connect them to other directly measured quantities [6]. With other words, indirectly 
measured values are calculated with combining several individually performed measurements.  
 
It is obvious that uncertainties of the combined/indirectly measured values would in praxis not be evaluated 
by statistical methods (Type A), but are evaluated combining type B estimated individual measurement 
uncertainties.  
 
 

1.1. Origin of the type B estimated uncertainties - Sensor uncertainty 
 
To measure individual quantities, sensors and transducers (in continuation called sensors) are used. Each 
sensor that can be purchased on market comes with sensor specifications. The sensor specification contains 
data about sensor accuracy, repeatability, temperature influences, time drift etc.  
 
Usually all datasheets state also a value that represent all uncertainty effects, however different terminology 
is used among the suppliers. The value representing all uncertainty effects may be called expected 
uncertainty, precision, sensor performance, or by other term. It is important that measurement engineer 
understands the meaning of the stated combined characteristic, which may refer to absolute or relative 
uncertainties stated for sensor range (full scale sometimes stated as FS). 
 
For hydraulic efficiency measurements the biggest problem represents measurement of flow for which 
absolute uncertainty exceeds ±0,5% and can raise up to ±2% for some measuring method [2]. By evaluating 
combined measuring uncertainties we can conclude, that uncertainties smaller than ±0,2% contributes little 
to the final uncertainty, thus indicating that more precise uncertainty evaluation of individual measurements 
is unnecessary. 
 
For each individual measurement individual sensor characteristics may be taken in account, however since 
todays sensor uncertainties are usually equal or better than ±0,2%FS, it hardly makes any sense to put 
tremendous effort in getting better uncertainty estimation.   
 
 

2. THEORY ON THE COMBINED UNCERTAINTY EVALUATION 
 
2.1. General theory on the combined uncertainty evaluation   
 
In general we shall assume that measured quantities may be correlated. Assessment of combined uncertainty 
when quantities correlated is in general evaluated as according to GUM [3]: 
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Where: 

   cu ….  Combined standard uncertainty 



  ic …  Sensitivity coefficient, ii xfc ∂∂=  

  )( ixu … Standard uncertainty of variable ix  

  ),( ji xxr … Correlation factor between variables ix  and jx  

 

For a special case where all quantities are uncorrelated, meaning that correlation coefficients are equal to 

0),( =ji xxr , the equation simplifies to  
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There is inconsistency between the usage of designation for uncertainty terms between GUM and IEC 60041 
[2]. Since traditionally IEC designations are widely used in uncertainty evaluations in hydraulic efficiency 
measurements, IEC designations will be used in the text. 
 
 

2.2. Combined uncertainty evaluation for uncorrelated uncertainty contributing variables 
 
It has been explained that in hydraulic efficiency measurements mostly all measured quantities are 
uncorrelated or correlation factors are close to 0 and as such assumed as uncorrelated. In this case, equation 
(2) may be used for combined measurement uncertainty evaluation.  
 
 

 Absolute uncertainty xe  of the measured Variable X 2.2.1.

 

Measurements are to be expressed as XXo δ± , where oX is central measured value and Xδ is absolute 

uncertainty which has the same dimension as the central measured value [6]. According to IEC60041, the 

absolute uncertainty is marked as Xe . 

 
 Example - Pressure measurement result with its measurement uncertainty is put down as:  
   

 
barbarepp po 05,05,41 ±=±=

 (3) 

 
 

 Combined absolute measurement uncertainty Fe  of the measured combined variable F 2.2.2.

 
For the function F which is combined of i independent (uncorrelated) variables xi , the evaluated combined 
absolute uncertainty can be expressed as: 
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 Relative measurement uncertainty Xf  of the measured variable X: 2.2.3.

 
The quality of a measurement cannot be solely determined by its absolute uncertainty ex. For example, an 
absolute uncertainty ex = 1mm has different meaning when referring to a length Xo = 1 cm or to a length Xo = 
10 m.  
 
The quality of a measurement is better expressed by the relative uncertainty which is expressed as a fraction 

between the absolute uncertainty Xe  and absolute value of measured value X: 

 
X

e
f x

X = [/] (5) 

 
The smaller the relative uncertainty is, the higher the quality of the measurement. By definition, the relative 
uncertainty is always a dimensionless quantity [6]. 

  
 Combined relative measurement uncertainty for uncorrelated variables ix  2.2.4.
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where ,....),,( 321 xxxfF =  and if is evaluated uncertainty of the independent variable ix . 

 

 
2.3. Deduction of equations for the evaluation of combined measurement uncertainty for 

uncorrelated variables 
 

 Function F is a multiplication or division of independent variables 2.3.1.
 
Let’s assume a function F which is a product of two independent (uncorrelated) variables A and B: 

  (7) 

 
According to equation (4), the combined measurement uncertainty is: 
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After solving the partial derives, the equation for combined absolute uncertainty becomes: 

  
(9) 

 
If we use equation (9) for absolute measurement uncertainty of the combined variable F and divide it by its 
absolute value, than we get the combined relative uncertainty as:  
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If individual absolute measurement uncertainties eA and eB are calculated from the expected relative 
measurement uncertainty of the used equipment based on equation (5), than the combined relative 
uncertainty can be written as:  

  

(11) 

 
This mathematical example shows that combined relative uncertainty of two products of two independent 
variables can be calculated as the square roots from the sum of squares of individual variables. 
 

When function F, is combined from product of independent variables ix as: 

 ixxxF ⋅⋅⋅= .....21  (12) 

 
than combined uncertainty fF can be in general form written as: 
 

 

  

(13) 

 
Deduction for fractional functions (not presented in this paper) shows that principle from equation (13) can 
exactly be used for evaluation of combined relative uncertainty of the fractional functions. 
 
 

 Function F is an addition or subtraction of independent variables 2.3.2.
 
Let’s assume a function H which is a sum several independent (uncorrelated) variables hi: 

 ihhhH +++= .....21  (14) 

 
According to equation (4), the combined measurement uncertainty is: 
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If we solve partial derives and use equation (9) in a way to deduct relative measurement uncertainty than we 
receive 
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With further deduction the equation becomes: 
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For a function H which is a sum several independent (uncorrelated) variables hi 

 ∑= ihH
 (18) 
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the general formula for evaluation of combined (weighted) relative uncertainty is: 
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 Function F is a combined from independent variables where one of the variables is powered 2.3.3.
 
Let’s assume a function F which is a product several independent (uncorrelated) variables hi: 

 BAF n ⋅=  (20) 

 

According to equation (4), the individual measurement uncertainty of the term nA is: 
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After solving the partial derives, the equation for combined absolute uncertainty becomes: 
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If we use equation (9) for absolute measurement uncertainty of the combined variable F and divide it by its 
absolute value, than: 
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When absolute uncertainty eA is calculated from the expected relative measurement uncertainty of the 
equipment based on equation (5), than the relative uncertainty can be written as:  

 Afn
A

f AAn ⋅⋅⋅= 1
 (24) 

 
After we reorder equation (24) we receive general formula for evaluation of the relative uncertainty of 
powered term: 
 

 AA
fnf n ⋅=  (25) 

 
 

 Function F is a multiplication or constant and measured variable 2.3.4.
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When measured variable is multiplied by a constant, a relative or an absolute uncertainty of the function is a 
multiplication of variable uncertainty. 
 
 

3. METHODOLOGY FOR SIMPLIFIED DEDUCTION OF EQUATIONS F OR 
MEASUREMENT UNCERTAINTY EVALUATION  

 
Let’s consider some example equation of efficiency measurement by ultrasonic measurement. We assume 
that all variables are independent: 
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To evaluate measurement uncertainty GUM proposes to calculate sensitivity coefficients ic for each 

measured quantities and calculate combined uncertainty according to eq (2). However for complex equations 
this method can be as first mathematically demanding and presentation of partial results difficult (partial 

results would in equation (29) refer to uncertainty of tP  and nH . Note that calculation sensitivity coefficient 

only represents a sensitivity or influence of particular measured quantity on the final result.  
 
We propose that a process of equation deduction is better to be done in sequence, where we separately 
evaluate and combine uncertainties for each part of measurement and calculation. 
 
To evaluate measurement uncertainty we propose to use a methodology of “Order of mathematical 
operations” know in mathematics as arithmetic precedence. So, in a same way as we start calculating above 
example as (H1-H2) in the first step, we would also start determining uncertainty of measurement of net head 
(H1-H2). In second step we would calculate uncertainty of flow measurement and so on.  The idea is, that if a 
part of equation represents some physical value (like Hn in eq. (29) does), we would like to present it in our 
assessment of measurement uncertainty.  
 
Once we know where to start, we continue by deduction of the equation parts. The deduction of equations for 
uncertainty evaluation can be performed as follows, depending of the pattern of analyzed portion of the 
equation: 
 

a.) X = A1 + A2 + …   � for uncertainty evaluation use rule (19) 
 
b.) X = A1 * A2 *…   � for uncertainty evaluation use rule (13) 
 
c.) X = An   � for uncertainty evaluation use rule (25) 

 
d.) X = k*A  � for uncertainty evaluation use rule (28) 

  

 



3.1. Uncertainty assessment example 
 
Consider measurement of turbine efficiency for Kaplan unit: 

- Flow is determined by Winter Kennedy method; spiral chase pressure difference at Winter-Kennedy pressure 

taps WKp∆ is measured by 0÷0,5bar differential meter, with relative uncertainty f=0,2% FS. 

- Net head is measured as a level difference between H1 and H2 taking into account the dynamic heads at 
measured points: 

o H1 is measured by pressure transducer (0÷1bar, f=±0,15% FS)  installed behind trash-racks; 
measuring crossection A2 estimated at f =±10% 

o H2 is measured by Plant measurement with checked uncertainty of e=±5cm (taking into account 
waves at tail-water level); measuring crossection A2 estimated at f =±5% 

- Generator power is measured by means of electrical power measurement using current and voltage 
transformers, both class 0,5%; power meter uncertainty is  f=±0,2% on measured value. 

- Turbine power is measured as generator power using generator efficiency characteristic (estimated uncertainty 
at f=±0,2%); Generator bearing losses are included in the generator efficiency characteristic. Turbine guide 
bearing losses are estimated by calculation with expected uncertainty f=±25%. 

- Uncertainties in water density as well as gravity factor are neglected.  
 

Uncertainty assessment for turbine efficacy is first divided into separate analysis for uncertainties of flow, 
head and turbine power. 
 
According to IEC60041:1991, the flow measurement uncertainty by Winter-Kennedy (WK) is estimated to 
be f=~±1,5%; Therefore we can assume that uncertainty of determining of WK constants (k and n) is 
estimated to be within f = ±1,5%. Flow uncertainty is than evaluated using eq. (25), and simplification for 
WK uncertainty estimate: 
 

 
n

WKpkQ ∆⋅=  (30) 
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Whenever values are measured by a transducer that have a relative uncertainty characteristic stated compared 
to full scale range (FS), first absolute measurement transducer uncertainty is to be determined and then 
compared to the measured value. By following this procedure, relative uncertainty of the measurement taken 
is calculated. In the Table 1, the measurement uncertainties of differential pressure dpWK and intake pressure 
behind trashracks pHWLtr are evaluated. 
 
In Hn uncertainty evaluation, first Static Head and then Dynamic heads are evaluated.  
Net head is determined as: 
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Dynamic head is calculated at measured points is calculated using discharge and known area, and so: 
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Net head uncertainty evaluation in three steps: 
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Developed example of turbine efficiency procedure is presented in Table 1. 
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Table 1 – Measurement uncertainty evaluation example 
 
Measurement point 1 2

designation uncertainty (+-)
Flow:

Differential pressure 

relative uncertainty pressure gauge relative uncertainty f_dp % 0,2

 / dp gauge meter range r_dp mbar 250

absolute uncertatinty: absolute uncertainty e_dp mbar 0,5
 / measured dpWK dpWK mbar 110
relative uncertainty uncertainty of dpWK f_dpWK % 0,45

Flow 
relative uncertainty Winter Kennedy constants estimation uncertatinty f_Wkconst % 1,50
 / Winter Kennedy exponent factor n  / 0,500
relative uncertainty Flow estimation uncertainty f_Q % 1,53

Net Head measured values: Hn m 15,6

Intake level

 / pressure gauge range r_p_HWL bar 1,6

relative uncertainty pressure gauge uncertainty f_p_HWL % 0,15

absolute uncertatinty: high water level after trashracks e_HWLtr m 0,024

Static Head Hstat m 15,3

relative uncertainty high water level after trashracks (compar. to Hstat) f_HWL_tr % 0,16
absolute uncertatinty: tail water level e_TWL m 0,05
relative uncertainty tail water level (comparing to Hstat) f_TWL % 0,33
relative uncertainty static head  (compared to Hn) f_Hstat(Hn) % 0,36

Dynamic Head Measured dynamic head Hdyn m 0,20
Measured dynamic head at point 1 Hdyn1 m 0,32
Measured dynamic head at point 2 Hdyn2 m 0,12

relative uncertatinty: A1 crossection estimation f_A1 % 10,0
relative uncertatinty: A2 crossection estimation f_A1 % 5,0
relative uncertatinty: flow measurement f_Q % 1,53
relative uncertatinty: dynamic head (comparred to Hn) f_Hdyn(Hn) % 0,24

Net Head
relative uncertainty Net Head f_Hn % 0,43

Turbine power measurement Pt MW 25,00
Generator power
relative uncertainty Power meter uncertainty f_P % 0,20
relative uncertainty Voltage transformer class f_CT % 0,50
relative uncertainty Current transformer class f_PT % 0,50
relative uncertainty Generator power f_Pgen % 0,73

relative uncertainty generator efficiency uncertainty estimation f_eta_gen % 0,20

Bearing losses TB_loss kW 15,00
relative uncertainty turbine bearing losses estimation f_TB_loss_est % 25,00
relative uncertainty turbine bearing losses calculated for Pt f_TB_loss % 0,02

Turbine power
relative uncertainty Turbine power f_Pt % 0,76

Hydraulic efficiency eta_t %(rel) 93,40
relative uncertainty turbine efficiency f_eta_t % 1,77
absolute uncertainty turbine efficiency e_eta_t %(abs) 1,65  

 

  



4. CONCLUSIONS  
 
Methodology presented in this paper offer simple method for deduction of equations for evaluation of 
relative measurement uncertainty for variables combined by independent (uncorrelated) individual 
measurements. Methodology showed to be useful for simple as well as complex variable equations.  
 
By performing measurement uncertainty evaluation by partial evaluation as per presented methodology, 
individual contributions of certain parts on the combined uncertainty can be evaluated and presented. This 
way of uncertainty analysis can highlight parts that have most influence on the measured result which is a 
basis for evaluation of possible and meaningful improvements for achieving lower measurement uncertainty. 
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