Optimal intra-station regimes of hydropower plants with asymmetric energetic characteristics

Aleksandar Petkovic, M. Sc. Mech. Eng. independent hydropower mechanical engineer, Belgrade, Serbia azpetkovicbgd@gmail.com

ABSTRACT

Improvement of exploitation of existing HPPs is important task. One of the most interesting aspects is improvement of overall efficiency of HPPs steady-state regimes. Achievement of higher efficiency results in reduction of water consumption. The saved and stored water allows for additional energy generation at the HPPs. The paper presents methodology for analysing optimal intra-station regimes of HPPs (a.k.a. optimal unit allocation/dispatching) availing with asymmetric energetic characteristics of gen-units and waterways, i.e. the HPPs developed and commissioned in two stages, run-of-river HPPs availing with several large and one small gen-unit for releasing guaranteed discharge, as well as multi-unit HPPs during the course of refurbishment/uprating. The optimization model is able to cope with various technical constraints, i.e. boundaries of turbines' exploitation ranges, as well as total spinning reserve and manoeuvrability of load variations of the active gen-units of HPP. A Case Study is presented. Findings show that for the analysed asymmetric HPPs energy generation over long-term periods can be increased for over 3%, as well as the revenues of the owner companies.

Key words: hydropower plants, optimal intra-station load dispatching, additional energy generation

1. Introduction

Improvement of exploitation of existing electric-power and water-utility systems, being infrastructure basis of utmost importance, surely comprises quite wide spectrum of organizational, socio-ecological, economic, technological and technical, as well as legislative questions. Necessity of permanent resolving of these questions is undoubtful nowdays, when these systems are dynamically evolving.

In regard of hydropower sector, such questions comprise, in example, improvement of technology and procedures for maintenance of equipment and upkeep of hydrotechnical structures of HPPs, modernization of their control systems, technological integration with other participants within belonging electric-power and water-utility systems etc. One of the crucial questions, for sure, is improvement of exploitation regimes of HPPs, with consideration of their ancillary services at deregulated electric power market environment.

Resolving the issues that relate to improvement of exploitation of existing HPPs allows for increase of their functionality within electric-power systems, as well as achievement of corresponding savings of hydropower resources, i.e. increase of energy generation and revenues for ancillary services. Outcoming benefits comprise appropriate increase of profit of HPP owner companies, as well as contribution of HPPs to the reduction of TPPs gas emissions.

Improvement of exploitation of existing HPPs have always been of great importance and required systematic approach and involvement of appropriate specialists. Nowdays, when electric-power and water-utility systems are dynamically evolving, exploitation regimes of HPPs are to be thoroughly re-considered. Professional attractivity of addressing such issues in unquestionable.

2. Problem statement

2.1. Technical formulation

Optimal Intra-Station Load Dispatching (OIntraSLD) problem is technically formulated in the following manner:

For the given value of headwater elevation and given status of gen-units availability for operation, determine the composition of active gen-units and load sharing among them, so to satisfy all applicable technical constraints and to provide that working process of the HPP performs in some sense in extremal way.

2.2. Mathematical formulation

2.2.1. Generic form

Generic form of mathematical statement of the OIntraSLD problem is as follows:

extr.
$$GF\left(\overline{s}, \overline{X}, \overline{P}\right)$$

subject to the constraints:

$$\begin{split} \overline{s} &\in S_{available}, \\ g_i(\overline{X}, \overline{P}) &= 0, \ i = 1, \dots, N_{EQ}, \\ h_i(\overline{X}, \overline{P}) &\leq 0, \ i = 1, \dots, N_{NEO}, \end{split}$$

whereas:

\overline{X}	- vector of state variables,
\overline{P}	- vector of state parameters,
GF	- goal function (optimization criterion),
$g_i(\overline{X},\overline{P})$	- equality constraints,
N_{EQ}	- entire number of equality constraints,
$h_i(\overline{X},\overline{P})$	- inequality constraints,
$N_{\scriptscriptstyle N\!E\!Q}$	- entire number of inequality constraints,
\overline{S}	- vector of composition of active gen-units,
$S_{\it available}$	- set of all possible vectors of gen-units compositions, as per their availability for
	operation.

OIntraSLD problem belongs to the class of non-linear, combinatorial, binary programming subject to non-linear constraints. It deals with multi-dimensional, multi-funnel, multi-modal functions, whereas non-linear constraints apply to the state variables, state parameters and to the quantities which are explicit and implicit functions (of equality and inequality nature) of theirs.

Such kind of mathematical problems do not avail with general analytic solutions. Therefore, in solution-finding it is necessary to engage appropriate numerical apparatus.

2.2.2. Concrete form

Concrete form of mathematical statement of the OIntraSLD problem used in the research is as follows:

$$\min_{\overline{s} \in S_{available}} (\overline{Q})$$

subject to the constraints:

1. plant-origin ones (to assure satisfying of all the necessary/envisaged constraints that are applicable to the entire HPP)

$$\begin{split} \overline{s} \in S_{available}; \\ P_{HPP,switchyard}\left(\overline{Q}\right) &= P_{HPP,switchyard}^{required} \quad [MW], \\ \Delta P_{HPP,RR}\left(\overline{Q}\right) &\geq \Delta P_{HPP,RR}^{required} \quad [MW], \\ \dot{P}_{HPP,MLV}\left(\overline{Q}\right) &\geq \dot{P}_{HPP,MLV}^{required} \quad [MW/s]; \end{split}$$

2. unit-origin ones (to assure satisfying of all the necessary/envisaged constraints that are applicable to each particular gen-unit - i.e. turbines workpoints to remain within real boundaries of their exploitation zones)

$$\begin{split} Q_{i} &\geq Q_{i,\min}, \ i = 1, \dots, N_{AGR}, \\ Q_{i} &\leq Q_{i,nom}, \ i = 1, \dots, N_{AGR}, \\ P_{T,i} &\leq P_{T,i,\max}, \ i = 1, \dots, N_{AGR}, \\ a_{GV,i} &\leq a_{GV,i,\max}, \ i = 1, \dots, N_{AGR}, \end{split}$$

whereas:

\overline{Q}	- vector of turbine discharges, [m ³ /s],
$\min Q_{HPP}(\overline{Q})$	- minimization of total discharge of HPP, [m ³ /s],
$P_{HPP,switchyard}(\overline{Q}$) - total active output of HPP (switchyard parity), [MW],
$\Delta P_{HPP,RR}(\overline{Q})$	- total spinning reserve of HPP (turbine parity), [MW],
$\dot{P}_{_{\!HPP,MLV}}(\overline{Q})$	- total manoeuvrability of load variation of HPP (turbine parity), [MW/s];
\overline{S}	- vector of composition of active gen-units, [/],
$S_{available}$	- set of all possible vectors of gen-units compositions, as per their
	availability for operation, [/];
$Q_{i,\min}$	- minimal discharge of turbine operating range of i -th gen-unit, [m ³ /s],
$Q_{i,nom}$	- rated turbine discharge of i -th gen-unit, [m ³ /s],
$P_{T,i,\max}$	- declared limit of turbine output of i -th gen-unit (rated output – if no
	over-loading is envisaged, respectively maximal output – if over-loading at high net heads is envisaged), [MW/s],
$a_{GV,i,\max}$	- declared limit of guide vanes opening of i -th gen-unit (rated opening – if
	no over-opening is envisaged, respectively maximal opening – if over- opening at low net heads is envisaged), [/];
N_{AGR}	- number of gen-units at the HPP, [/].

The following quantities are selected as characteristic ones for the optimization problem:

- goal function (optimization criterion)	minimization of total discharge of HPP,
- optimization variables	turbine discharges,
- optimization parameters	headwater elevations, as well as constellation of
	availability of gen-units,
- constraints	HPP total active output (switchyard parity) and
	two issues crucial for providing prerequisites for
	HPP ancillary service of participation in primary
	frequency regulation - minimal values of HPP
	total spinning reserve (turbine parity) and total
	manouvreability of load variation (turbine parity).

As per the applied form of mathematical statement of the problem, the goal function is decomponed in terms of gen-units availability. This means that the optimization problem (min. $Q_{HPP}(\overline{Q})$) is being solved via sub-optimization (i.e. partial optimization problems), over the entire set of feasible compositions of active gen-units ($\overline{s} \in S_{available}$). For several reasons, this approach is mathematically more convenient compared to the non-decomponed approach (with gen-units activity indices s_i embedded directly in the goal function as additional optimization variables, leading to increased dimensionality and direct binarity of the problem, i.e. $GF = \min.Q_{HPP}(\overline{s}, \overline{Q}) = \min.(\overline{s}^T \cdot \overline{Q}) = \min.\sum s_i \cdot Q_i$.

2.2.3. Other possible formulations of goal function (optimization criterion)

As per nature of HPP exploitation, other formulations of goal function are also possible.

In example, a HPP that is being exploited in the regime of demanded total discharge (Q_{HPP} defined) may be optimized for maximization of active output at switchyard parity (i.e. $GF = \max P_{HPP,switchyard}(\overline{Q})$). In such case, the value of Q_{HPP} is to be considered as one of the technical constraints which are to be satisfied.

As another example, a HPP operating under deregulated market conditions (incomes gained both in regard of active output and participation in primary frequency regulation as an ancillary service) may be optimized for maximization of the $GF = \max (c_P \cdot P_{HPP,switchyard} + c_{prf} \cdot \Delta P_{HPP,prf})$. Here c_P and c_{prf} are selling prices for active output and output variations (rms value) within primary frequency regulation.

3. Problem solution

3.1. Modelling of energetic characteristics of HPP elements (waterways and generating equipment)

All the elements of a HPP are modelled via regression polynomials of appropriate form.

Tailwater characteristics are modelled via 3D-regression polynomial $z_{TW} = f(Q_{HPP}, z_{HW}^{downstream HPP})$. Waterways headloss characteristics are modelled quadratic polynomial $\Delta H_i = k_i \cdot Q_i^2$. Turbine efficiency characteristics are modelled via 3D-regression polynomial $\eta_T = f(Q_T, H_T)$, i.e.

$$\eta_{T} = f(Q_{T}, H_{T}) = a_{1} + + a_{2} \cdot H_{T} + a_{3} \cdot Q_{T} + + a_{4} \cdot H_{T}^{2} + a_{5} \cdot Q_{T}^{2} + a_{6} \cdot Q_{T} \cdot H_{T} + + a_{7} \cdot Q_{T}^{3} + a_{8} \cdot H_{T}^{3} + a_{9} \cdot H_{T} \cdot Q_{T}^{2} + a_{10} \cdot H_{T}^{2} \cdot Q_{T} + + a_{11} \cdot H_{T}^{4} + a_{12} \cdot Q_{T}^{4} + a_{13} \cdot H_{T}^{3} \cdot Q_{T} + a_{14} \cdot H_{T}^{2} \cdot Q_{T}^{2} + a_{15} \cdot H_{T} \cdot Q_{T}^{3}$$

Generator efficiency characteristics are modelled via 2D-regression polynomial $\eta_G = f(P_G)$, ignoring influence of power factor $\cos \varphi$, i.e. $\eta_G = a_1 + a_2 \cdot P_G + a_3 \cdot P_G^2 + a_4 \cdot P_G^3 + a_5 \cdot P_G^4$. Step-up transformer efficiency characteristics are modelled as $\eta_{TR,P} = \frac{P_{TR} - \Delta P_{TR}}{P_{TR}} = 1 - \frac{1}{P_{TR}} \cdot \left[\Delta P_{no-load} + \Delta P_{short-circuit}^{nom} \cdot \left(\frac{S_{TR}}{S_{TR}^{nom}} \right)^2 \right]$. HPP auxiliary

consumption is modelled as a fixed value.

3.2. Finding feasible constellations of active gen-units

Not all compositions from the set of all *possible* compositions (as per availability of genunits) should be investigated. Prior to optimization runs, it is necessary to determine:

- the set of equivalent compositions (out of all possible compositions), and

- the set of *feasible* compositions (out of the equivalent ones).

This assures two important issues – just feasible solutions to be furtherly passed to optimization runs as well as significant decrease of problem dimensionality.

Finding *equivalent* compositions from the set of all possible compositions as per availability of gen-units is being done by transition from nameplate numbers of gen-units at the HPP onto the vector of type and number of gen-units as per each type. Here, type of gen-units means type of energetic characteristics of the gen-units and their appurtenant waterways. At HPPs availing with symmetric energetic characteristics there is only one type of gen-units. On the other side, at HPPs availing with asymmetric energetic characteristics either of turbines/generators or of the waterways, there are two (or more) types of gen-units.

As an example, let's consider a HPP availing with 6 gen-units, 3 of them being refurbished ones, while the remaining 3 are still to undergo refurbishment. There are 2 types of gen-units, 3 of the first type and 3 of the second type. Consider that all of them are available for operation. Total *possible* number of gen-units compositions is $C_{possible} = 2^{N_{AGR}} = 2^6 = 64$. On the other side, the number of *effective* compositions is just $C_{effective} = \prod_{type=1}^{N_{oppe}} (N_{AGR}(type)+1) = (3+1) \cdot (3+1) = 16$.

Furthermore, not all of the equivalent compositions are always *feasible*. It depends on the values of technical constraints that are involved. For instance, when some relatively low value of active output of HPP is required, some of the compositions (with $5\div6$ gen-units) are infeasible. Also, when some high value of active output of HPP is required, many of the compositions (with $1\div4$ gen-units) are clearly infeasible. Furthermore, if relatively high value of active output of HPP, combined with relatively high values of spinning reserve and/or

manoeuvrability of load variation to remain at the HPP is required, this might influence infeasibility of compositions with 5 active gen-units, leading just 6 gen-units as feasible.

The pre-selection of feasible compositions out of equivalent ones strongly depends on the scope and values of the technical constraints that are involved in the optimization problem. In any case, this significantly reduces dimensionality of the optimization problem – from as many as several tens of compositions of active gen-units onto just a few ones.

3.3. Methodology of solving Optimal Intra-Station Load Dispatching problem

Therefore multiple solving of partial optimization problems over the set of all feasible compositions of active gen-units is necessary. Overall-optimal solution is ultimately obtained by ranking the solutions of partial optimization problems (ref. Item 2.2.2.) as per their goal function values.

Solving partial optimization problems may be done either by employment of global optimizers or by multi-start local optimizers.

4. Case study

4.1. Description of the hydropower system

Developed methodology has been applied to an existing cascaded hydropower system (HPPs Vrla 1 to Vrla 4 in Serbia). The optimization has been done just via 4 separate intra-station optimal dispatchings, i.e. no inter-station optimization has been performed. Inter-station load dispatching (no-optimal one) is kept as per the existing procedures of the owner company.

	HP		P 1	HPP 2		HPP 3		HPP 4	
	entirely	phase 1 (1958)	phase 2 (1977)						
- number of HPPs	4		/		/		/		/
- number of gen_units	10	4	1		2		2		2
- number of gen-units	10	2	2	1	1	1	1	1	1
- type of turbines	/	Pel	ton	Fra	ncis	Fra	ncis	Fra	ncis
- HPP installed turbine output	120	50).6	24	24.2		9.2	25.5	
[MW]; turbine rated output [MW]	150	2 x 11.7	2 x 13.6	11.3	12.9	13.5	15.7	11.4	14.1
 max. turbine operating output [MW] 	≈ 123	≈ 48		≈ 22.6		≈ 27.3		≈ 23.6	
- average annual energy generation [GWh/y]	310	10)5	55		82		6	8
- total installed discharge [m ³ /s]	/	18	3.5	18	3.5	18.5		18	3.5
- turbine rated discharge [m ³ /s]	/	2 x 4	2 x 5.25	8.5	10	8.5	10	8.5	10
- gross head range, approx. [m]	865	340 (343÷334)		160 (162÷157)		205 (206÷203)		(172-	70 ÷168)
- average annual operating time,	1	2600	2800	3350	3500	3050	4050	3050	4150
approx. [h/y; h/day]	/	(7.5)	(8)	(9.5)	(10)	(8.5)	(11.5)	(8.5)	(12)
 average annual number of gen- units starts, approx. [start/y] 	/	210	230	220	330	260	360	235	340

Main characteristics of the system are stated herebelow.

Due to limited space, no detail characteristics of the waterways (head losses characteristics) and equipment (turbine hill charts and generator efficiency characteristics) can be fully presented.

As can be seen, each of the HPPs avail with asymmetric energetic characteristics. The system had been commissioned in 2 phases (1958. and 1976.). Waterways and gen-units within each of the HPPs are mutually quite different (penstock diameters, turbine hill charts, installed discharges etc.).

4.2. Comparative results of actually performed regimes and intra-station optimal ones

HPP: V	Vrla 1							Day	: 11.1.2007.	
time	duration	output P_{HPP}^{switchyard}generated active	generated active	actually regimes	performed at the HPP	optimal ir reg	itra-station	water savi optimal in regi	water savings due to optimal intra-station regimes	
[h]	[h]	(requirement by regional Dispatching Center)	energy E ^{switchyard} [MWh]	discharge Q_{HPP} $[m^3/s]$	utilized water <i>W_{HPP}</i> [m ³ * 10 ³]	discharge Q_{HE}^{opt} $[m^3/s]$	utilized water W_{HPP}^{opt} $[m^3 * 10^3]$	discharge ΔQ_{HE}^{opt} [m ³ /s]	water ΔW_{HE}^{opt} $[m^3 * 10^3]$	
01	1	0	-	-	-	-	-	-	-	
02	1	0	-	-	-	-	-	-	-	
03	1	0	-	-	-	-	-	-	-	
04	1	0	-	-	-	-	-	-	-	
05	1	0	-	-	-	-	-	-	-	
06	1	0	-	-	-	-	-	-	-	
07	1	12	12	4.316	15.53832	4.090	14.72544	0.2258	0.81288	
08	1	12	12	4.316	15.53832	4.090	14.72544	0.2258	0.81288	
09	1	44	44	16.167	58.20228	15.807	56.90340	0.3608	1.29888	
10	1	44	44	16.167	58.20228	15.807	56.90340	0.3608	1.29888	
11	1	44	44	16.167	58.20228	15.807	56.90340	0.3608	1.29888	
12	1	42	42	15.408	55.46844	14.930	53.74944	0.4775	1.71900	
13	1	8	8	2.824	10.16712	2.714	9.77076	0.1101	0.39636	
14	1	8	8	2.824	10.16712	2.714	9.77076	0.1101	0.39636	
15	1	8	8	2.824	10.16712	2.714	9.77076	0.1101	0.39636	
16	1	8	8	2.824	10.16712	2.714	9.77076	0.1101	0.39636	
17	1	23	23	7.979	28.72404	7.888	28.39644	0.0910	0.32760	
18	1	12	12	4.316	15.53832	4.090	14.72544	0.2258	0.81288	
19	1	12	12	4.316	15.53832	4.090	14.72544	0.2258	0.81288	
20	1	12	12	4.316	15.53832	4.090	14.72544	0.2258	0.81288	
21	1	6	6	2.181	7.85232	2.051	7.38180	0.1307	0.47052	
22	1	0	-	-	-	-	-	-	-	
23	1	0	-	-	-	-	-	-	-	
24	1	0	-	-	-	-	-	-	-	
					-	-		-		
		$\Sigma =$	295	$\Sigma =$	385.01172	$\Sigma =$	372.94812	$\Sigma =$	12.06360	
- totally	y generated ac	tive energy at the	: HPP		$\Sigma E_{HPP}^{switchyan}$	$r^{d} = 295 \ MW$	^{'h} /day			
- totally	- totally utilized water, as per actually performed regimes $\Sigma W_{HPP} = 385012 \frac{m^3}{day}$									
			••		(CHPP -	ΣW_{HPP}	/ 0.10	m ³⁾		
- totally	y utilized wate	r, as per optimal	intra-station reg	umes	$\Sigma W_{HPP} = 3$	switchyard	day = -3.1%	1		

- totally utilized water, as per actually performed regimes	$\Sigma W_{HPP} = 385012 \ m \ / day$
	$(e_{HPP} = \frac{\sum E_{WPP}^{switchyard}}{\sum W_{HPP}} = 0.766210 \ \frac{kWh}{m^3}$
- totally utilized water, as per optimal intra-station regimes	$\Sigma W_{HPP}^{opt} = 372948.1 \ m^3/_{day} = -3.1\%$
	$(e_{HPP}^{opt} = \frac{\Sigma E_{HPP}^{switchyard}}{\Sigma W_{HPP}^{opt}} = 0.790995 \ \frac{kWh}{m^3} = +3.23\%)$
- saved water, as per optimal intra-station regimes	$\Sigma \Delta W_{HPP}^{opt} = 12064 \ m^3 / day$
- additional energy generation, from saved water	$\Delta E_{HPP}^{opt} = e_{HPP}^{opt} * \Sigma \Delta W_{HPP}^{opt} = 9.542 \ \frac{MWh}{day} = +3.23\%$

HPP: V	Vrla 2							Day	: 11.1.2007.	
time	duration	output P ^{switchyard} [MW]	generated active	actually regimes	performed at the HPP	optimal ii reg	ntra-station imes	water savi optimal ir regi	water savings due to optimal intra-station regimes	
[h]	[h]	(requirement by regional Dispatching Center)	energy E ^{switchyard} [MWh]	discharge Q _{HPP} [m ³ /s]	utilized water <i>W_{HPP}</i> [m ³ * 10 ³]	discharge Q_{HE}^{opt} $[m^3/s]$	utilized water W ^{opt} _{HPP} [m ³ * 10 ³]	discharge ΔQ_{HE}^{opt} [m ³ /s]	water ΔW_{HE}^{opt} $[m^3 * 10^3]$	
01	1	0	-	-	-	-	-	-	-	
02	1	0	-	-	-	-	-	-	-	
03	1	0	-	-	-	-	-	-	-	
04	1	0	-	-	-	-	-	-	-	
05	1	0	-	-	-	-	-	-	-	
06	1	0	-	-	-	-	-	-	-	
07	1	6	6	5.399	19.43748	4.663	16.78608	0.7365	2.65140	
08	1	6	6	5.399	19.43748	4.663	16.78608	0.7365	2.65140	
09	1	21	21	16.532	59.51520	16.218	58.38588	0.3137	1.12932	
10	1	21	21	16.532	59.51520	16.218	58.38588	0.3137	1.12932	
11	1	21	21	16.532	59.51520	16.218	58.38588	0.3137	1.12932	
12	1	20 (9+11)	20	15.413	55.48608	15.311	55.11924	0.1019	0.36684	
13	1	/ (3+4)	/	6.089	21.91932	5.329	19.18476	0.7596	2./3456	
14	1	4(0+4)	4	3.338	12.01572	(3.338)	(12.01572)	(0)	(0)	
15	1	4(0+4)	4	3.338	12.01372	(3.338)	(12.01372)	(0)	(0)	
10	1	4 (0+4)	12	0.756	24 11260	(3.336)	21 26068	0.7622	2 74202	
17	1	6	6	5 399	19 43748	4 663	16 78608	0.7022	2.74392	
19	1	6	6	5 399	19.43748	4.663	16 78608	0.7365	2.65140	
20	1	7 (4+3)	7	6 108	21 98772	5 329	19 18476	0.7786	2.80296	
21	1	7 (4+3)	7	6.108	21.98772	5.329	19.18476	0.7786	2.80296	
22	1	3	3	2.636	9.48996	(2.636)	(9.48996)	(0)	(0)	
23	1	0	-	-	-	-	-	-	-	
24	1	0	-	-	-	-	-	-	-	
		Σ=	155	Σ=	457.32708	Σ=	431.88012	Σ=	25.44470	
- totally	y generated ac	tive energy at the	HPP		$\Sigma E_{HPP}^{switchyan}$	rd = 155 MW	^h /day			
- totally	utilized wate	er, as per actually	performed regin	nes	$\Sigma W_{HPP} = 4$	157327 ^{m³} / _d	lay			
					$(e_{HPP} = \frac{\Sigma E_{I}}{2})$	$\frac{W_{HPP}}{\Sigma W_{HPP}} = 0.$.338926 ^{kWh} /	(m^{3})		
- totally	vutilized wate	er, as per optimal	intra-station reg	imes	$\Sigma W_{HPP}^{opt} = 4$	31880.1 $\overline{m^3}_{/}$	day = -5.6%			
	$(e_{HPP}^{opt} = \frac{\Sigma E_{HPP}^{switchyard}}{\Sigma E_{HPP}^{sop}} = 0.358896 \frac{kWh}{m^3} = +5.89\%)$									
- saved	water, as per	optimal intra-stat	ion regimes		$\Sigma \Delta W_{HPP}^{opt} =$	$25445 \frac{m^3}{d}$	lay			
- additi	onal energy g	eneration, from sa	aved water		$\Delta E_{HPP}^{opt} = \epsilon$	$e_{HPP}^{opt} * \Sigma \Delta W_{HPP}^{op}$	$\frac{t}{P} = 9.133 \ \overline{MW}$	h/day = +5	.89%	

HPP: V	Vrla 3							Day	: 11.1.2007.	
time	duration	output P ^{switchyard} [MW]	generated active	actually regimes	performed at the HPP	optimal ir reg	ntra-station imes	water savi optimal ir regi	water savings due to optimal intra-station regimes	
[h]	[h]	(requirement by regional Dispatching Center)	energy E ^{switchyard} [MWh]	discharge Q _{HPP} [m ³ /s]	utilized water <i>W_{HPP}</i> [m ³ * 10 ³]	discharge Q_{HE}^{opt} $[m^3/s]$	utilized water W_{HPP}^{opt} $[m^3 * 10^3]$	discharge ΔQ_{HE}^{opt} $[m^3/s]$	water ΔW_{HE}^{opt} $[m^3 * 10^3]$	
01	1	0	-	-	-	-	-	-	-	
02	1	0	-	-	-	-	-	-	-	
03	1	0	-	-	-	-	-	-	-	
04	1	0	-	-	-	-	-	-	-	
05	1	0	-	-	-	-	-	-	-	
06	1	0	-	-	-	-	-	-	-	
07	1	8	8	5.503	19.8108	4.942	17.7912	0.5602	2.01672	
08	1	8	8	5.503	19.8108	4.942	17.7912	0.5602	2.01672	
09	1	25	25	15.585	56.106	15.573	56.0628	0.0119	0.04284	
10	1	25	25	15.585	56.106	15.573	56.0628	0.0119	0.04284	
11	1	25	25	15.585	56.106	15.573	56.0628	0.0119	0.04284	
12	1	25	25	15.585	56.106	15.573	56.0628	0.0119	0.04284	
13	1	6	6	3.915	14.094	(3.915)	(14.0940)	(0)	(0)	
14	1	6	6	3.915	14.094	(3.915)	(14.0940)	(0)	(0)	
15	1	6	6	3.915	14.094	(3.915)	(14.0940)	(0)	(0)	
10	1	0	12	3.913 8.141	20 2076	(3.913)	(14.0940)	(0)	1 00008	
17	1	8	8	5 503	29.3070	1.013	27.4008	0.5278	2.01672	
10	1	8	8	5.503	19.8108	4.942	17.7912	0.5602	2.01072	
20	1	7 (2+5)	7	4 981	17.9316	4.942	15 9444	0.5520	1 98720	
20	1	8	8	5 503	19.8108	4 942	17 7912	0.5520	2.01672	
22	1	7 (0+7)	7	4 429	15 9444	(4 429)	(15 9444)	(0)	(0)	
23	1	0	-	-	-	-	-	-	-	
24	1	0	-	-	-	-	-	-	-	
				•					•	
		$\Sigma =$	191	$\Sigma =$	443.023	$\Sigma =$	428.891	$\Sigma =$	14.132	
- totally	generated ac	tive energy at the	HPP		$\Sigma E_{HPP}^{switchya}$	$r^{rd} = 191 \ MW$	h/day			
- totally	utilized wate	er, as per actually	performed regin	mes	$\Sigma W_{HPP} = 4$	$\Sigma W_{HPP} = 443023 \ \frac{m^3}{day}$				
						$(e_{HPP} = \frac{\sum_{EHPP}}{\sum_{WHPP}} = 0.431129 \ \frac{kWh}{m^3}$				
- totally	- totally utilized water, as per optimal intra-station regimes				$\Sigma W_{HPP}^{opt} = 4$	$\Sigma W_{HPP}^{opt} = 428891 \ m^3 / day = -3.2\%$				
						$(e_{HPP}^{opt} = \frac{\sum_{PPP}^{SWitchyard}}{\sum_{WhPP}} = 0.445335 \ \frac{kWh}{m^3} = +3.30\%)$				
- saved	water, as per	optimal intra-stat	ion regimes		$\Sigma \Delta W_{HPP}^{opt} =$	$\Sigma \Delta W_{HPP}^{opt} = 14132 \ m^3 / day$				
- additi	onal energy g	eneration, from sa	aved water		$\Delta E_{HPP}^{opt} = e$	$\Delta E_{HPP}^{opt} = e_{HPP}^{opt} * \Sigma \Delta W_{HPP}^{opt} = 6.293 \ \frac{MWh}{day} = +3.30\%$				

HPP: V	Vrla 4							Day	: 11.1.2007.
time	duration	output P ^{switchyard} [MW]	generated active	actually regimes	performed at the HPP	optimal in reg	ntra-station imes	water savi optimal in regi	ngs due to tra-station mes
[h]	[h]	(requirement by regional Dispatching Center)	energy E ^{switchyard} [MWh]	discharge Q _{HPP} [m ³ /s]	utilized water W_{HPP} $[m^3 * 10^3]$	discharge Q_{HE}^{opt} $[m^3/s]$	utilized water W_{HPP}^{opt} $[m^3 * 10^3]$	discharge ΔQ_{HE}^{opt} $[m^{3}/s]$	water ΔW_{HF}^{opt} $[m^3 * 10^3]$
01	1	0	-	-	-	-	-	-	-
02	1	0	-	-	-	-	-	-	-
03	1	0	-	-	-	-	-	-	-
04	1	0	-	-	-	-	-	-	-
05	1	0	-	-	-	-	-	-	-
06	1	0	-	-	-	-	-	-	-
07	1	6(3+3)	6	4.944	17.7984	4.403	15.8508	0.541	1.9476
08	1	0 (3+3)	23	4.944	50 7024	4.403	13.8308	0.341	0.4464
10	1	23	23	16 584	59 7024	16.460	59,2560	0.124	0.4464
11	1	21 (9+12)	23	14 818	53 3448	(14.817)	(53 3448)	(0)	(0)
12	1	22	22	15.796	56.8656	15.606	56,1816	0.190	0.6840
13	1	5	5	3.809	13.7124	3.775	13.5900	0.034	0.1224
14	1	5	5	3.809	13.7124	3.775	13.5900	0.034	0.1224
15	1	5	5	3.809	13.7124	3.775	13.5900	0.034	0.1224
16	1	5	5	3.809	13.7124	3.775	13.5900	0.034	0.1224
17	1	12	12	8.769	31.5684	8.151	29.3436	0.618	2.2248
18	1	6 (3+3)	6	4.944	17.7984	4.403	15.8508	0.541	1.9476
19	1	6 (3+3)	6	4.944	17.7984	4.403	15.8508	0.541	1.9476
20	1	6 (3+3)	6	4.944	17.7984	4.403	15.8508	0.541	1.9476
21	1	7	7	5.009	18.0324	(5.009)	(18.0324)	(0)	(0)
22	1	0	-	-	-	-	-	-	-
23	1	0	-	-	-	-	-	-	-
24	1	0	-	-	-	-	-	-	-
		$\Sigma =$	158	Σ=	423.0576	Σ=	409.0284	Σ=	14.0292
- totally	generated ac	tive energy at the	HPP		$\Sigma E_{HPP}^{switchyas}$	$r^{d} = 158 \ MW$	h/day		
- totally	vutilized wate	er, as per actually	performed regi	mes	es $\Sigma W_{HPP} = 423058 \frac{m^3}{day}$				
					$(e_{HPP} = \frac{\sum_{MPP}^{\text{switchyard}}}{\sum_{W\mu pp}} = 0.373472 \ \frac{kWh}{m^3}$				
- totally	- totally utilized water, as per optimal intra-station regimes				$\Sigma W_{HPP}^{opt} = 409028 \ m^3 / day = -3.3\%$				
					$(e_{HPP}^{opt} = \frac{\Sigma E_{HPP}^{SWitchyara}}{\Sigma W_{HPP}^{opt}} = 0.386281 \ \frac{kWh}{m^3} = +3.40\%)$				
- saved	water, as per	optimal intra-stat	tion regimes		$\Sigma\Delta W_{HPP}^{opt} = 14029 \ m^3/day$				
- additi	onal energy g	eneration, from sa	aved water		$\Delta E_{HPP}^{opt} = \epsilon$	$\Delta E_{HPP}^{opt} = e_{HPP}^{opt} * \Sigma \Delta W_{HPP}^{opt} = 5.419 \ \frac{MWh}{day} = +3.40\%$			

Overview of combined results for all 4 HPPs

-			
	$\Sigma E_{HPP Vrla1-4} [MWh]$	$\Sigma \Delta E_{HPP Vrla 1-4} [MWh]$	$e_{HPP Vrla 1-4} [\%]$
day	4-4-W	additional energy generation,	additional energy generation, from
	for the entire 4 HPPs	from saved water	saved water
		(absolute value)	(percentual value)
11.1.2007.	799 MWh	30.39 MWh	+3.80%
		11BB 17 1 4	
		HPP Vria I	
- totally generate	ed active energy at the HPP	$\Sigma E_{HPP}^{SWRCHYBRIG} = 295 \text{ MW H}$	t/day
- totally utilized	water, as per actually performed regimes	$\Sigma W_{HPP} = 385012 \frac{m^3}{da}$	у
		$(e_{HPP} = \frac{\Sigma E_{HPP}}{\Sigma W_{HPP}} = 0.7$	$\frac{66210 \ kWh}{m^3}$
- totally utilized	water, as per optimal intra-station regime	es $\Sigma W_{HPP}^{opt} = 372948.1 \frac{m^3}{d}$	ay = -3.1%
		$(e_{HPP}^{opt} = \frac{\Sigma E_{HPP}^{switchyard}}{\Sigma W_{HPP}^{opt}} = 0.7$	90995 $kWh/m^3 = +3.23\%$
- saved water, as	s per optimal intra-station regimes	$\Sigma\Delta W_{HPP}^{opt} = 12064 \ m^3/da$	у
- additional ener	gy generation, from saved water	$\Delta E^{opt}_{HPP} = e^{opt}_{HPP} * \Sigma \Delta W^{opt}_{HPP}$	$= 9.542 \ \frac{MWh}{day} = +3.23\%$
		HPP Vrla 2	
- totally generate	ed active energy at the HPP	$\Sigma E_{HPP}^{switchyard} = 155 \ MWh$	l/day
- totally utilized	water, as per actually performed regimes	$\Sigma W_{HPP} = 457327 \frac{m^3}{da}$	у
		$(e_{HPP} = \frac{\Sigma E_{HPP}^{SWICHYaFa}}{\Sigma W_{HPP}} = 0.3$	$38926 \frac{kWh}{m^{3}}$
- totally utilized	water, as per optimal intra-station regime	es $\Sigma W_{HPP}^{opt} = 431880.1 \frac{m^3}{d}$	ay = -5.6%
		$(e_{HPP}^{opt} = \frac{\Sigma E_{HPP}^{switchyard}}{\Sigma W_{HPP}^{opt}} = 0.3$	58896 $^{kWh}/_{m^3} = +5.89\%)$
- saved water, as	s per optimal intra-station regimes	$\Sigma \Delta W_{HPP}^{opt} = 25445 \ m^3 / da$	у
- additional ener	gy generation, from saved water	$\Delta E_{HPP}^{opt} = e_{HPP}^{opt} * \Sigma \Delta W_{HPP}^{opt}$	$= 9.133 \ ^{MWh}/_{day} = +5.89\%$
		HPP Vrla 3	
- totally generate	ed active energy at the HPP	$\Sigma E_{HPP}^{switchyard} = 191 \ MWh$	l/day
- totally utilized	water, as per actually performed regimes	$\Sigma W_{HPP} = 443023 \frac{m^3}{dc}$	ıy
		$(e_{HPP} = \frac{\Sigma E_{HPP}^{SWILCHydra}}{\Sigma W_{HPP}} = 0.4$	31129 kWh/m^{3}
- totally utilized	water, as per optimal intra-station regime	es $\Sigma W_{HPP}^{opt} = 428891 \frac{m^3}{da}$	$y_{y} = -3.2\%$
		$(e_{HPP}^{opt} = \frac{\Sigma E_{HPP}^{switchyard}}{\Sigma W_{HPP}^{opt}} = 0.4$	45335 $kWh/m^3 = +3.30\%$)
- saved water, as	s per optimal intra-station regimes	$\Sigma \Delta W_{HPP}^{opt} = 14132 \ m^3 / da$	ly
- additional ener	gy generation, from saved water	$\Delta E_{HPP}^{opt} = e_{HPP}^{opt} * \Sigma \Delta W_{HPP}^{opt}$	$= 6.293 \ \frac{MWh}{day} = +3.30\%$
		HPP Vrla 4	
- totally generate	ed active energy at the HPP	$\Sigma E_{HPP}^{switchyard} = 158 \ MWh$	/day
- totally utilized	water, as per actually performed regimes	$\Sigma W_{\mu p p} = 423058 \ m^3/_{J}$	
, , , , , , , , , , , , , , , , , , ,	, r	$(e_{HPP} = \frac{\Sigma E_{HPP}^{switchyard}}{0.3} = 0.3$	$73472 \ kWh/$
- totally utilized	water as ner ontimal intra-station racim	$\frac{\Sigma W_{HPP}}{\Sigma W^{opt} - 400028 m^3}$	3 3%
- totany utilized	water, as per optimal intra-station regime	$2 v v_{HPP} - 409020 m / da$	y = 3.370
		$(e_{HPP}^{opt} = \frac{\Sigma S_{HPP}}{\Sigma W_{HPP}^{opt}} = 0.3$	$86281 \frac{k}{m} n/m^3 = +3.40\%$
- saved water, as	s per optimal intra-station regimes	$\Sigma \Delta W_{HPP}^{opt} = 14029 \ m^3 / da$	<i>ly</i>
- additional ener	gy generation, from saved water	$\Delta E^{opt}_{HPP} = e^{opt}_{HPP} * \Sigma \Delta W^{opt}_{HPP}$	$= 5.419 \ \frac{MWh}{dav} = +3.40\%$

5. Conclusions

1. Optimization of exploitation regimes of HPPs allows for significant additional energy generation and benefits to the owner companies.

2. Intra-station optimization is applicable to any HPP, both the ones availing with asymmetric and the ones with symmetric energetic characteristics. Anyhow, the HPPs with asymmetric energetic characteristics are far more eligible to optimization gains.

3. Primary potential for intra-station optimization of HPPs lies in the asymmetry of the energetic characteristics (constructive-type specifics).

Secondary potential for intra-station optimization lies in the involvement of complex technical constraints onto their exploitation regimes and in the cases when HPPs are being predominantly exploited at medium outputs, far apart from installed/maximal output (regime-type specifics).

Eligibility for optimization gains drastically increases with increase of overall complexity of exploitation conditions. This is self-evident, because under complex conditions there are no simple, straightforward solutions of extremal regimes, and therefore advanced numerical models are to be employed.

4. Implementation of developed intra-station optimization tools is readily applicable at HPPs. Neither efforts in regard of any public licences or consents, nor in regard of interventions or reconstructions at HPPs are necessary. All that is needed are just Tables of optimal intra-station regimes and their due application by HPP exploitation personnel.

5. The system of HPPs Vrla 1-4 that had been analysed within the Case Study avails with quite complex and asymmetric energetic characteristics. It is shown that additional energy generation, obtainable by implementation of intra-station optimization, is as high as 3% (10 GWh/year). This benefit is equivalent to 1230 t/year of equivalent coal, or to annual consumption of approx. 1400 households (at approx. 600 kWh/month), or to approx. 600.000 EUR/year (at 6 EURc/kWh).

6. For illustrative purposes, one of the elaborated Tables of optimal intra-station regimes (for HPP Vrla 1) and charts depicting the characteristic values are enclosed herebelow.

HPP	Vrla	<u>1 avai</u>	lability	y22	RR0	MLV0

availability of	of requirements for HPP exploitation			composition of															
gen-units	P _{HPP switchvard}			active gen-units	Q _{HPP}	Q _T (1)	Q _T (2)	Q _T (3)	Q _T (4)	P _{HPP,turbine} parity	P _T (1)	P _T (2)	P _T (3)	P _T (4)	P _{HPP,generator} parity	P _G (1)	P _G (2)	P _G (3)	P _G (4)
[/]	[MW]	[MW]	[kW/s]	[/]	[m ³ /s]	[m ³ /s]	[m ³ /s]	[m ³ /s]	[m ³ /s]	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]
N/A	1	0	0					<u> </u>											
N/A	2	0	0																
"1111	3	6.987	53.1	"1000	1.265	1.265	0	0	0	3.602	3.602	0	0	0	3.277	3.277	0	0	0
"1111	4	9.046	56	"0010	1.591	0	0	1.591	0	4.574	0	0	4.574	0	4.279	0	0	4.279	0
"1111	5	8.036	72.2	"0010	1.915	0	0	1.915	0	5.584	0	0	5.584	0	5.283	0	0	5.283	0
"1111	6	7.028	78	"0010	2.244	0	0	2.244	0	6.593	0	0	6.593	0	6.287	0	0	6.287	0
"1111	7	6.017	75.4	"0010	2.58	0	0	2.58	0	7.603	0	0	7.603	0	7.293	0	0	7.293	0
"1111	8	5.003	68.8	"0010	2.924	0	0	2.924	0	8.617	0	0	8.617	0	8.3	0	0	8.3	0
"1111	9	3.985	61.3	"0010	3.272	0	0	3.272	0	9.635	0	0	9.635	0	9.307	0	0	9.307	0
"1111	10	2.966	54.2	"0010	3.624	0	0	3.624	0	10.654	0	0	10.654	0	10.315	0	0	10.315	0
"1111	11	1.945	47.9	"0010	3.977	0	0	3.977	0	11.675	0	0	11.675	0	11.324	0	0	11.324	0
"1111	12	0.83	42.6	"0010	4.333	0	0	4.333	0	12.696	0	0	12.696	0	12.334	0	0	12.334	0
"1111	13	10.349	160.8	"1010	4.758	2.196	0	2.562	0	13.968	6.425	0	7.543	0	13.333	6.1	0	7.233	0
"1111	14	9.339	153.9	"1010	5.101	2.288	0	2.812	0	14.978	6.694	0	8.284	0	14.34	6.371	0	7.969	0
"1111	15	8.326	146	"1010	5.448	2.357	0	3.091	0	15.991	6.892	0	9.099	0	15.347	6.57	0	8.777	0
"1111	16	7.31	138.2	"1010	5.799	2.4	0	3.399	0	17.007	7.014	0	9.993	0	16.354	6.693	0	9.662	0
"1111	17	6.291	131.1	"1010	6.152	2.422	0	3.73	0	18.026	7.076	0	10.95	0	17.363	6.756	0	10.607	0
"1111	18	5.272	124.8	"1010	6.507	2.445	0	4.063	0	19.046	7.139	0	11.907	0	18.372	6.818	0	11.554	0
"1111	19	4.253	118.8	"1010	6.865	2.496	0	4.369	0	20.064	7.282	0	12.782	0	19.381	6.962	0	12.419	0
"1111	20	3.171	112.5	"1010	7.229	2.592	0	4.637	0	21.08	7.546	0	13.535	0	20.391	7.227	0	13.164	0
"1111	21	2.215	105.7	"1010	7.604	2.732	0	4.871	0	22.096	7.922	0	14.175	0	21.401	7.604	0	13.797	0
"1111	22	1.206	97.1	"1010	7.996	2.996	0	5	0	23.109	8.596	0	14.513	0	22.411	8.279	0	14.131	0
"1111	23	13.545	133.4	"1011	8.364	2.477	0	2.944	2.944	24.349	7.222	0	8.564	8.564	23.394	6.902	0	8.246	8.246
"1111	24	12.53	127.5	"1011	8.726	2.522	0	3.102	3.102	25.364	7.346	0	9.009	9.009	24.402	7.026	0	8.688	8.688
"1111	25	11.384	122.1	"1011	9.092	2.561	0	3.265	3.265	26.38	7.452	0	9.464	9.464	25.409	7.133	0	9.138	9.138
"1111	26	10.438	117.1	"1011	9.461	2.596	0	3.433	3.433	27.397	7.544	0	9.927	9.927	26.417	7.225	0	9.596	9.596
"1111	27	9.479	112.6	"1011	9.834	2.628	0	3.603	3.603	28.416	7.628	0	10.394	10.394	27.425	7.31	0	10.058	10.058
"1111	28	8.46	108.5	"1011	10.21	2.659	0	3.775	3.775	29.434	7.71	0	10.862	10.862	28.433	7.392	0	10.521	10.521
"1111	29	7.441	104.5	"1011	10.589	2.694	0	3.948	3.948	30.454	7.8	0	11.327	11.327	29.442	7.482	0	10.98	10.98
"1111	30	6.422	100.7	"1011	10.973	2.735	0	4.119	4.119	31.473	7.907	0	11.783	11.783	30.452	7.59	0	11.431	11.431
"1111	31	14.45	118.4	"1111	11.356	2.346	2.346	3.333	3.333	32.75	6.743	6.743	9.632	9.632	31.449	6.42	6.42	9.304	9.304
"1111	32	13.469	113.6	"1111	11.73	2.374	2.374	3.491	3.491	33.767	6.816	6.816	10.068	10.068	32.457	6.493	6.493	9.735	9.735
"1111	33	12.474	109.2	"1111	12.107	2.4	2.4	3.654	3.654	34.784	6.882	6.882	10.51	10.51	33.465	6.56	6.56	10.172	10.172
"1111	34	11.457	105	"1111	12.488	2.427	2.427	3.817	3.817	35.802	6.95	6.95	10.951	10.951	34.473	6.628	6.628	10.608	10.608
"1111	35	10.439	101	"1111	12.873	2.457	2.457	3.98	3.98	36.819	7.024	7.024	11.386	11.386	35.482	6.703	6.703	11.038	11.038
"1111	36	9.421	97.2	"1111	13.261	2.492	2.492	4.138	4.138	37.837	7.113	7.113	11.805	11.805	36.491	6.792	6.792	11.453	11.453
"1111	37	8.405	93.3	"1111	13.656	2.536	2.536	4.292	4.292	38.854	7.221	7.221	12.205	12.205	37.5	6.901	6.901	11.849	11.849
"1111	38	7.389	89.3	"1111	14.057	2.59	2.59	4.439	4.439	39.87	7.353	7.353	12.582	12.582	38.51	7.033	7.033	12.222	12.222
"1111	39	6.373	85.3	"1111	14.468	2.655	2.655	4.579	4.579	40.885	7.51	7.51	12.933	12.933	39.519	7.191	7.191	12.569	12.569
"1111	40	5.358	81.2	"1111	14.889	2.733	2.733	4.712	4.712	41.9	7.693	7.693	13.257	13.257	40.529	7.375	7.375	12.89	12.89
"1111	41	4.344	70.0		15.323	2.824	2.824	4.837	4.837	42.915	7.903	7.903	13.554	13.554	41.539	7.586	7.586	13.184	13.184
"1111	42	3.307	72.6		15.775	2.932	2.932	4.956	4.956	43.929	8.142	8.142	13.822	13.822	42.548	7.825	7.825	13.449	13.449
"1111	43	2.234	07.2		10.248	3.124	3.124	5	5	44.939	0.000	0.550	12.914	13.914	43.557	0.24	0.24	13.339	13.539
"1111	44	1.213	01.1 FC F		17.077	3.402	3.402	4.978	4.9/8	45.947	9.122	9.122	12.00	13.00	44.500	0.000	0.000	13.4//	13.4//
"1111	45	0.154	56.5	"1111	17.277	3.639	3.639	5	1 701	40.90	9.59	9.59	12 274	13.89	45.576	9.272	9.272	13.515	13.515
	45.503	-0.239	53	1111	17.549	3.994	5.994	4./01	4./01	47.402	10.30	10.30	13.3/1	13.371	40.083	10.039	10.039	13.002	13.002