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The rods facing the flow are of neutral hydrofoil-shaped steel (35 X 73 mm) and the axial rods are of round pipe. 
The same type of profiled rods was used for calibration of the current meters. Wire ropes with 3.5 kN of 
pretension were used to add rigidity to the structure. A finite element analysis was performed to confirm the 
design, and it showed that maximum deflection of the structure under the worst conditions would be 6.5 mm—
compared to 760 mm without the strengthening wires. 

The structure was moved up and down in the stoplog gate slots using an automated chain hoist. The major part 
of the 21 m of vertical movement needed to cover the water intake in its entirety was at a speed of 20 mm/s, that 
is, less than 2% of the average velocity of the discharge. Slower speeds were programmed near the floor and in 
the upper part of the section to obtain greater resolution where the velocity profile changes more steeply.  

EFFICIENCY RESULTS 

Figure 6 shows the efficiency curves obtained for the three turbines and the prototype curve anticipated by model 
testing. All results were normalized to a 13-m net head using the hill chart of the model and assuming a constant 
discharge. Measured net heads were all higher than 12.9 m and only the very low discharge points had net heads 
above 13.5 m. Consequently, most of the normalization represented less than 0.2% of the net head. Turbines 1 
and 3 were not tested at maximum wicket gate opening. 
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Figure 6: Efficiencies of the three turbines 

Efficiencies measured for the three turbines are more than 1% below the expected curve for the major part of the 
turbine operating range. The three turbines have their differences, but all are in a 0.5% efficiency band over the 
full operating range, with peak efficiencies near 94% and less than 0.1% apart. It is common to find differences 
in the efficiencies of new units despite low tolerance in the manufacturing of modern turbines. Though the 
shapes of the efficiency curves for the three turbines differ from that of the model tests, they are all similar: 
efficiency plateaus as the blades start to open near 25 MW, with a 0.5% bump at about 90% rated output and 
80% blade opening. 

VELOCITY PROFILE 

Figure 7 shows, on the left, a typical measured velocity profile for unit 2 at rated output with the blades at 
maximum opening. On the right is the CFD simulation of the velocity profile at the rated discharge. 
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The peak efficiency curve is the envelope of the summits of the fixed-blade curves, which is how the turbine is 
meant to be operated according to the cam charts. This efficiency curve relies on well-adjusted and calibrated 
sensors as well as proper cam charts for every condition of output and head. The charts give the position 
command to the blade as a function of gate opening and difference in static pressure between the upstream and 
downstream sides of the turbine.  

Several problems were found regarding blade positioning during the testing. Unit 1 was substantially off, leading 
to up to a 5% loss in efficiency. Unit 2 was almost perfect during the tests, while unit 3 was mildly off, but not 
on the same side as unit 1. Our first reaction was to try to adjust the tables, but testing was only done at one head 
and the differences between the units did not seem right. Investigations showed that some of the static pressure 
sensors, on which cam charts rely, were not calibrated properly, but this did not entirely explain the differences. 
Further investigation showed that unit 1 was giving more output for a given blade and gate position than the 
other units, and comparisons with the model tests showed that none of the units were giving the right output in 
accordance with their openings. In other words, the problem was incorrect adjustment of the blade-positioning 
sensor. Even unit 2, which seemed right at first, in fact had two problems which cancelled each other out for the 
head concerned. 

CONCLUSIONS 

In conclusion, efficiency testing was successfully done on the three bulb units with reliable results at an 
acceptable level of uncertainty. 

Numerical tools were very helpful in the process. Simple modeling was a big help in optimizing the current 
meter holding structure, and CFD flow simulation helped throughout the process, from structure design to result 
interpretation and uncertainty evaluation. 

Efficiency of the three units was lower than expected from model testing, but the difference was within the 
uncertainty band of the tests and the step-up of the model. The uncertainty of the prototype testing was evaluated 
at 1.02%, which is relatively low for current-meter testing at water intake. The size of the measuring section 
reduces the relative weight of the boundary layers, floor and upper end of the section, which are harder to 
measure. The large number of current meters used, their self-compensation up to 45° and the fact that no 
negative velocity was found are other factors that contributed to keeping uncertainty relatively low. 

Both the scanning of the water intake with the current meters and the index testing of the fixed-blade curves to 
find the best efficiency point were done with a constant slow movement rather than static measurements. As 
changing the direction did not affect the results, this technique meant more efficient testing, as more 
measurements were taken within a given time period and the measuring section and efficiency curves could be 
completely explored.  

Measuring immediately behind a pillar did not affect the accuracy of the results. The CFD simulation, the higher 
concentration of current meters and the use of a Doppler velocimeter were all important factors that helped to 
mitigate uncertainties in the measured velocity profile and increase the level of confidence in the results. 

The most important outcome of the tests was the correction of blade positioning. The three units needed 
intervention for different reasons, such as position-sensor misconfiguration. Blade positioning charts were 
optimized and the gains in efficiency will mean a rapid return on the investment in the test campaign. 
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