
IGHEM 2018, Beijing, China, September 10-13, 2018  Page 1 

Gauss-Kronrod Integration for rectangular closed conduits  
 

P. Gruber1, T. Staubli2, F. Fahrni2 

 
1pgconsult, Grenzacherweg 116, 4125 Riehen, Switzerland 

2HSLU Lucerne, Technikumstasse21, 6048 Horw, Switzerland 

E-mail (corresponding author): peter.gruber@hslu.ch  

 
Abstract 

 
There exist cases of closed conduits applications, where the performance of the chosen configuration of the ATT flow 

measurement is unsatisfactory. One method of improving the situation is to add more paths to the existing installations In 

case of circular closed conduits and Gauss-Jacobi integration, there exists the nice feature, that by interlacing new paths in 

between the old paths, the positions of the old paths do not change without losing in accuracy of the discharge calculation. 

That means that polynomial deviations from the assumed weighting function W=(1-x2)1/2, of order 2(2N*+1)-1 =4N*+1 

(equal the degree of exactness of the quadrature formula) can be integrated without error. N* corresponds to the number 

of original paths. In case of an original 4-path in one plane configuration extended to a 9-path in one plane configuration, 

N*=4, N=9, degree of exactness=17. This has an enormous advantage, because the already implemented path positions do 

not have to be changed. In case of rectangular closed conduits, this is unfortunately no more the case. For the optimal 

interlacing arrangement, all positions change. For rectangular conduits, in theory the positioning is less of a problem due 

to the fact, that all the transducers have the same pill angle independent on the transducer positions. Nevertheless, from the 

installation effort point of view, it is often a request to not move the old positions. Kronrod [1] derived optimal formulas 

for the interlacing positions and all weights under the constraints of the old N* positions. Due to the constraints, the degree 

of the quadrature formula is 3N*+1 (N* even, e.g. N*=4, degree=13) or 3N*+2 (N* odd). The paper gives the 

corresponding positions and weights for the interesting cases N*=2, 3 and 4, and compares the results with the known 

choice of positions and weights for assumed and simulated flow profiles. As the flow profiles are in reality not rational 

functions, the loss in polynomial accuracy is not always clear. 

 
 

1. Introduction 

 

The performance of an ATT flow measurement installation is in applications, where the hydraulic situation is difficult or 

not well known, hard to evaluate. In recent years, improved CFD flow simulations for hydraulic difficult situations allow 

a reasonable estimate of the integration error of the measurement. The question of measurement location, orientation and 

path configuration (number of layers, crossed, not crossed) are important parameters that can be varied for finding an 

optimal solution by CFD simulations. Figure 1 shows two examples of crossed 8-path configurations (2 vertical planes and 

4 layers each) 

 

 
Fig. 1: Crossed path configuration for the ATT measurement method 

 

After CFD simulation studies or from experience of experts, the measurement is finally parametrized. A common example 

is the 8-path (2 times 4 paths in 2 planes) configurations with Gauss-Jacobi positions and weightings for circular closed 

conduits. After the installation, commissioning and putting into operation of such a measurement, the individual path 

velocities respectively axial and transverse velocities, are recorded and monitored. If unusual profiles are observed and 

installation errors can be excluded, one way to improve the accuracy of the flow measurement is increasing the number of 

paths. Marushchenko, Gruber [2] showed that with an increase from 4 paths to 5 paths (centre path) in one plane, substantial 

improvements can be achieved. The future revised version of IEC60041 standard [3] will open up the number of paths up 
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to 10(20). The ASME PTC18 code is proposing for difficult hydraulic situations to implement 9 (18) paths [4]. The 

improvement by adding more paths suffers of course from the law of diminishing returns, which states that the gain in 

accuracy is decreasing with each additional path. 

The case of interlacing additional paths is particularly interesting for circular sections because the positions of the old 

positions do not change, as is shown in section 2. For rectangular sections, similar arguments for the accuracy hold as in 

the case of circular sections. The positioning however is different for all paths. It must be noted, that in case of rectangular 

sections, a repositioning of the old path positions is not a problem from the transducers (pill angles) perspectives. We 

consider here however the situation that a repositioning is not an option. Reasons for this could be the following: 

- Transducers are difficult to remove from old positions 

- Remounting of transducers is costly due to difficult access 

- New transducer positions not accessible 

 

 

2. Existing tables for positions and weights 

 

2.1 Original table 

In 2010, Tresch & al [5] presented the derivation of general positions (see Figure 1 & 2) and weights and the following 

Table 1 with positions and weights for four different cases 

 

              Gauss-Jacobi p &w    OWICS p &w     Gauss-Legendre p & w      OWIRS p & w 

Number 

of paths 

N

Positions 

di/(D/2)

Weights                   

wi

Positions 

di/(D/2)

Weights                   

wi

Positions 

di/(D/2)

Weights                   

wi

Positions 

di/(D/2)

Weights                   

wi

1 0 1.570796 0 1.513365 0 2 0 1.837286

2 0.5 0.906900 0.487950 0.890786 0.577350 1 0.550482 0.969761

3 0 0.785398 0 0.768693 0 0.888889 0 0.853688

0.707107 0.555360 0.695608 0.553707 0.774597 0.555556 0.752355 0.557403

4 0.309017 0.597566 0.303783 0.588228 0.339981 0.652145 0.329729 0.634200

0.809017 0.369316 0.799639 0.371884 0.861136 0.347855 0.844510 0.356143

5 0 0.523599 0 0.515768 0 0.568889 0 0.554092

0.5 0.453450 0.493266 0.448857 0.538469 0.478629 0.525989 0.470657

0.866025 0.261799 0.858534 0.265433 0.906180 0.236927 0.893646 0.245772

6 0.222521 0.437547 0.219676 0.432160 0.238619 0.467914 0.233427 0.458140

0.623490 0.350885 0.616712 0.348913 0.661209 0.360762 0.649158 0.357811

0.900969 0.194727 0.894939 0.198413 0.932470 0.171324 0.922789 0.179346

7 0 0.392699 0 0.388174 0 0.417959 0 0.409876

0.382683 0.362807 0.378515 0.359341 0.405845 0.381830 0.398454 0.375801

0.707107 0.277680 0.700797 0.277122 0.741531 0.279705 0.730661 0.279255

0.923880 0.150279 0.918958 0.153701 0.949108 0.129485 0.941444 0.136455

8 0.173648 0.343763 0.171873 0.340324 0.183435 0.362684 0.180326 0.356680

0.5 0.302300 0.495335 0.300163 0.525532 0.313707 0.517455 0.310151

0.766044 0.224375 0.760344 0.224578 0.796666 0.222381 0.787085 0.223172

0.939693 0.119388 0.935615 0.122463 0.960290 0.101229 0.954089 0.107221

9 0 0.314236 0 0.311216 0 0.330239 0 0.325159

0.309017 0.298715 0.306222 0.296281 0.324253 0.312347 0.319446 0.308080

0.587785 0.254205 0.583053 0.252911 0.613371 0.260611 0.605335 0.258640

0.809017 0.184635 0.803925 0.185265 0.836031 0.180648 0.827640 0.182040

0.951057 0.097090 0.947631 0.099815 0.968160 0.081274 0.963048 0.086431

 
Table 1: general table for position & weights for variable number of paths in one plane 

 

The table is based on the original Gaussian quadrature method with an additional weighting function W(z). In this 

application of the method, the area flow function (AFF) F(z) corresponds to the weighting function W(z).  

F(z) describes the distribution of the partial flow rates for each height z and is expressed by the product between the 

averaged axial velocity and the width b(z) of the conduit at height z (Staubli & al [5]) 
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𝐹(𝑧) = 𝑣̅𝑎𝑥(𝑧) · 𝑏(𝑧) [𝑚2/𝑠]       (1) 

 

At the height of the path position 𝑧𝑖, the width 𝑏(𝑧𝑖) is equal to the projected path length Li,proj : 

  

𝑏(𝑧𝑖) = 𝐿𝑖,𝑝𝑟𝑜𝑗 = 𝐿𝑖 · sin()     (2) 

 

Integration of  F(z) over the whole cross section yields the discharge Q 

  

 

𝑄 = ∫ 𝐹(𝑧)𝑑𝑧
𝐷

2

−
𝐷

2

        (3) 

 

The different integration weights of the Gauss-Jacobi and the OWICS method for circular section and Gauss-Legendre 

and OWIRS methods have their origin in different assumption on the shape of the theoretical reference area flow func-

tion respectively velocity distribution. They can be distinguished by a single parameter . The assumed AFF is therefore 

given by 

𝐹𝑟𝑒𝑓(𝑧) = 𝐶 · (1 −
z2

(
𝐷

2
)

2)



 [
𝑚2

𝑠
]      (4) 

 

C: case dependent constant 

Parameter  for circular sections:  Gauss-Jacobi (GJ):     0.5  OWICS: 0.6 

Parameter  for rectangular sections: Gauss-Legendre (GL):   0  OWIRS: 0.15 

 

With the normalization  𝜁 =
𝑧

𝐷
2⁄
,    Fref  can be written as: 

 

 

𝐹𝑟𝑒𝑓(𝑧) = 𝐶 · (1 − 𝜁2)  [
𝑚2

𝑠
]       (5) 

 

With this assumed AFF Fref  and the proper choice of  , the positions and weights wi of Table 1 can be determined by the 

Gaussian quadrature. 

 

The discharge Q can then be computed by: 

 

𝑄 =
𝐷

2
· ∑ 𝑤𝑖 · 𝑣̅𝑎𝑥(𝑧𝑖) · 𝑏(𝑧𝑖)𝑁

𝑖=1       (6) 

 

 
 

Fig. 2: path positions 
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2.2 IEC 60041 table 

If the complete OWICS or OWIRS methods are used, all positions and weights are always different for the Gauss-Jacobi 

and the Gauss-Legendre cases as can be seen from Table 1. The existing IEC 60041standard demands that a 4-path (1 

plane) or 8 path (2 crossed planes) installation has to use Gauss-Jacobi or Gauss-Legendre positions for the path heights. 

This means that the pill angles of the transducers for circular sections are designed specifically for the Gauss-Jacobi 

positions. Most transducers in IEC conformal installations have therefore been mounted in this way in the past. That is the 

reason why the OWICS/OWIRS methods were modified in such a way that the OWICS/OWIRS weights are determined 

for the Gauss-Jacobi rep. Gauss-Legendre positions (Table 3 cases 2 & 4). Table 3 shows additionally an augmented table 

(number of paths from 1 to 10 in one plane). For IEC conformal installations the number N of paths in one plane is not 

foreseen for N<4.  Additionally, if the actual positions of an installation are measured after mounting the transducers, the 

weights should be recalculated with the actual positions. An uncertainty analysis for mispositioning the OWICS/OWIRS 

positions shows that the induced error by the proposed procedure is very small [6], [7]. 

 

Number of 

paths N

Positions 

di/(D/2)

Weights                   

wi

Positions 

di/(D/2)

Weights                   

wi

Positions 

di/(D/2)

Weights                   

wi

Positions 

di/(D/2)

Weights                   

wi

1 0 1.570796 0 1.513365 0 2 0 1.837286

2 0.5 0.906900 0.5 0.899243 0.577350 1 0.577350 0.959152

3 0 0.785398 0 0.792715 0 0.888889 0 0.909365

0.707107 0.555360 0.707107 0.546150 0.774597 0.555556 0.774597 0.532319

4 0.309017 0.597566 0.309017 0.598640 0.339981 0.652145 0.339981 0.655527

0.809017 0.369316 0.809017 0.365222 0.861136 0.347855 0.861136 0.336984

5 0 0.523599 0 0.521504 0 0.568889 0 0.562705

0.5 0.453450 0.5 0.455836 0.538469 0.478629 0.538469 0.485402

0.866025 0.261799 0.866025 0.258135 0.906180 0.236927 0.906180 0.228094

6 0.222521 0.437547 0.222521 0.437269 0.238619 0.467914 0.238619 0.467005

0.623490 0.350885 0.623490 0.351849 0.661209 0.360762 0.661209 0.363690

0.900969 0.194727 0.900969 0.192460 0.932470 0.171324 0.932470 0.165695

7 0 0.392699 0 0.393562 0 0.417959 0 0.420611

0.382683 0.362807 0.382683 0.361873 0.405845 0.381830 0.405845 0.379019

0.707107 0.277680 0.707107 0.278885 0.741531 0.279705 0.741531 0.283085

0.923880 0.150279 0.923880 0.148296 0.949108 0.129485 0.949108 0.124840

8 0.173648 0.343763 0.173648 0.343866 0.183435 0.362684 0.183435 0.363020

0.5 0.302300 0.5 0.301961 0.525532 0.313707 0.525532 0.312642

0.766044 0.224375 0.766044 0.225064 0.796666 0.222381 0.796666 0.224377

0.939693 0.119388 0.939693 0.117966 0.960290 0.101229 0.960290 0.097845

9 0 0.314236 0 0.313796 0 0.330239 0 0.328802

0.309017 0.298715 0.309017 0.299176 0.324253 0.312347 0.324253 0.313833

0.587785 0.254205 0.587785 0.253670 0.613371 0.260611 0.613371 0.258953

0.809017 0.184635 0.809017 0.185362 0.836031 0.180648 0.836031 0.182700

0.951057 0.097090 0.951057 0.095849 0.968160 0.081274 0.968160 0.078403

10 0.142315 0.282716 0.142315 0.282666 0.148874 0.295520 0.148874 0.295355

0.415415 0.259734 0.415415 0.259886 0.433395 0.269269 0.433395 0.269783

0.654861 0.215901 0.654861 0.215622 0.679410 0.219085 0.679410 0.218183

0.841254 0.154364 0.841254 0.154852 0.865063 0.149453 0.865063 0.150878

0.959493 0.080483 0.959493 0.079523 0.973907 0.066671 0.973907 0.064413

Gauss-Jacobi positions & 

Gauss-Jacobi weights

Gauss-Jacobi positions & 

OWICS weights

Gauss-Legendre positions & 

Gauss-Legendre weights

Gauss-Legendre positions & 

OWIRS weights

 
Table 2: augmented table for positions and weights proposed for IEC 60041 revision, 
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3. Adding interlacing positions and weights: Gauss-Kronrod 

The Gauss–Kronrod quadrature formula is an adaptive method for numerical integration. It is a variant of Gaussian 

quadrature, in which the evaluation points are chosen such that an accurate approximation can be computed by re-using 

the information produced by the computation of a less accurate approximation. It is an example of what is called a nested 

quadrature rule: for the same set of function evaluation points, it has two quadrature rules, one higher order and one 

lower order (the latter called an embedded rule). The difference between these two approximations is used to estimate the 

calculational error of the integration. The formulae are named after Alexander Kronrod [1], who derived them in the 

1960s, and Gauss. Gauss–Kronrod quadrature is used in the QUADPACK library, the GNU Scientific Library, the NAG 

Numerical Libraries and R [5]. 

 

The original Gaussian N quadrature rule for the approximation of the integral of a function f with a weight function W is 

given for an interval [-1, 1] by the following formula: 

 

                                            ∫ 𝑊(𝜁)𝑓
1

−1
(𝜁)𝑑𝜁 = ∑ 𝑤𝑖

𝑁
𝑖=1 𝑓(𝜁𝑖) + 𝑅𝑁 

𝐺 (𝑓)                                       (7) 

 

𝜁𝑖  and wi are the positions and the positive weights which can be determined such that the degree of exactness is [9] 

 

                                                                        𝑑𝑁 
𝐺 = 2𝑁 − 1                                                                           (8) 

  
That means that a polynomial function f of order 2N-1 can be integrated by the weighted sum of equation (7) without 

error: 

 

                                                                                    𝑅𝑁 
𝐺 (𝑓) = 0                            (9) 

 

Polynomial function of higher order or transcendental functions can only integrated with a remaining error term. With 

increasing the number N, the approximation of equation (7) gets better for transcendental functions.  

The position and weights wi and 𝜁𝑖 , i=1,…N are the ones listed in Table 1 for four different kind of weight function W, 

where only the nonnegative positions are listed due to the fact that the positions are symmetrical to the 𝜁-axis. 

 

The Gauss-Kronrod quadrature formula, extending equation (7), has the form [9] 

 

∫ 𝑊(𝜁)𝑓
1

−1
(𝜁)𝑑𝜁 = ∑ 𝑤𝑖

∗𝑁∗

𝑖=1 𝑓(𝜁𝑖) + ∑ 𝑤𝑙
∗𝑁∗+1

𝑙=1 𝑓(𝜁𝑙) + 𝑅𝑁∗ 
𝐾 (𝑓)                              (10) 

 

Equation (10) means that the approximation of the integration is as follows: At the N* old positions 𝜁𝑖 , i=1,…N*, the N* 

weights 𝑤𝑖
∗ are newly computed. The old function values 𝑓(𝜁𝑖) are then added up weighted by 𝑤𝑖

∗. The second sum 

considers the N*+1 new interlacing positions 𝜁𝑙 , l=1,…,N*+1. Kronrod derived the new positions 𝜁𝑙 , l=1,…,N*+1 and 

the new weights 𝑤𝑖
∗, i=1,…,N* and 𝑤𝑙

∗, l=1,…,N*+1, such that despite the constraints of keeping the old positions fixed 

the degree of exactness is 

𝑑𝑁 
𝐾 = 3𝑁∗ + 1   for N* even 

 

𝑑𝑁 
𝐾 = 3𝑁∗ + 2   for N* odd          (11) 

 

In case of an odd N* one degree can be gained because the centre position 0 is not changed. If we compare this exactness 

with the one of the pure Gaussian quadrature formula where all N=2N*+1 positions and the corresponding weights are 

determined, a reduction of exactness of  

 

∆𝑑𝑁 
𝐾 =  𝑑𝑁 

𝐺 − 𝑑𝑁 
𝐾 = 2(2𝑁∗ + 1) − 1 − (3𝑁∗ + 1) = 𝑁∗                 for N* even 

 

∆𝑑𝑁 
𝐾 =  𝑑𝑁 

𝐺 − 𝑑𝑁 
𝐾 = 2(2𝑁∗ + 1) − 1 − (3𝑁∗ + 2) = 𝑁∗ − 1          for N*  odd            (12) 

 

is inevitable.  

 

For the interesting cases in for ATT applications, the following table results 

 

N* 𝑑𝑁 
𝐺  𝑑𝑁 

𝐾  ∆𝑑𝑁 
𝐾   

2 9 7 2 2 to 5 paths 

3 13 11 2 3 to 7 paths 

4 17 13 4 4 to 9 paths 
Table 3: loss of exactness for the a general weight function W and Gauss-Kronrod quadrature 

 

 

https://en.wikipedia.org/wiki/Adaptive_quadrature
https://en.wikipedia.org/wiki/Numerical_integration
https://en.wikipedia.org/wiki/Gaussian_quadrature
https://en.wikipedia.org/wiki/Gaussian_quadrature
https://en.wikipedia.org/w/index.php?title=Nested_quadrature_rule&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Nested_quadrature_rule&action=edit&redlink=1
https://en.wikipedia.org/wiki/Alexander_Kronrod
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/QUADPACK
https://en.wikipedia.org/wiki/GNU_Scientific_Library
https://en.wikipedia.org/wiki/NAG_Numerical_Libraries
https://en.wikipedia.org/wiki/NAG_Numerical_Libraries
https://en.wikipedia.org/wiki/R_%28programming_language%29
https://en.wikipedia.org/wiki/Gauss%E2%80%93Kronrod_quadrature_formula#cite_note-1


IGHEM 2018, Beijing, China, September 10-13, 2018  Page 6 

 

3.1 Special case: Jacobi-Chebyshev weight functions and interlacing nods 

The Jacobi weight function is defined as 

 

                 𝑊(𝛼,𝛽)(𝜁) = (1 − 𝜁)𝛼(1 + 𝜁)𝛽             on [-1,1]                    (13) 

 

Special cases are the four Chebyshev weights if  |𝛼| =  |𝛽| =
1

2
   , as for each one of them the corresponding Gauss-

Kronrod formula has a special form with explicitly known nodes and weights [9]. For the Chebyshev weight of the 

second kind with 𝛼 = 𝛽 =
1

2
   ,   

 
                           𝑊(0.5,0.5)(𝜁) = (1 − 𝜁2)0.5                                                                    (14) 

 
which corresponds to the AFF for of equation (5). It turns out that for this case the Gauss-Kronrod formula is the 

the N=2N*+1 Gauss-Jacobi formula for this weight. Therefore, in case of circular closed conduits and Gauss-Jacobi 

integration, there exists the nice feature, that by interlacing N*+1 new paths in between the old N* paths to total of 

N=2N*+1 paths (e.g. N*=4, 2N*+1=9), the positions of the old paths do not change without losing in accuracy [10]. That 

means, that polynomial deviations from the assumed weighting function 𝑊(0.5,0.5)(𝜁) = (1 − 𝜁2)0.5 of order 2(2N*+1)-1 

=4N*+1 (equal the degree of the quadrature formula, e.g. 17) can still be integrated without error. This has the additional 

benefit, that the already implemented path positions do not have to be changed. This can for instance be seen in Table 1 if 

one goes up in the case of Gauss-Jacobi from N=2 to N=5, the position 0.5 remains the same.  

 

 

3.2 Kronrod position and weights 

In case of rectangular section, the weighting function W is equal 1, and the nice property of section 3.1 does no more 

hold. Therefore the loss in exactness given by equations (12) has to be considered. The consequence of this is, that for 

polynomial functions the Gauss-Kronrod approximation is slightly inferior to the original Gauss-Legendre approxima-

tion. For transcendental function like log and exponential functions, the loss cannot be specified straightforward. Well 

developed turbulent flow profiles are often approximated by complicated transcendental and functions.  For the three 

path configuration N=3,4 and 5 in one plane, Table 4 gives the Gauss-Kronrod positions and weights. 

 

 N=5  N=7  N=9 

di/(D/2) wi di/(D/2) wi di/(D/2) wi 

0 0.622222 0 0.450917 0 0.346443 

+/-0.577350 0.490909 +/-0.434244 0.401340 +/-0.339981 0.326919 

+/-0.925820 0.197978 +/-0.774597 0.268488 +/-0.640286 0.266798 

  +/-0.960491 0.104656 +/-0.861136 0.170054 

    +/-0.976560 0.062978 
Table 4: Kronrod positions & weights 

 

The positions in bold figures indicate the Gauss-Legendre positions for the old path numbers N*=2, 3 and 4 

 

3.3 Gauss-Legendre and OWIRS 

In order to compare the performance of the Gauss-Kronrod approximation, the following approximations were applied to 

the same flow profiles in a rectangular cross section: 

 

- Gauss-Legendre positions and weights 

- OWIRS positions and weights 

- Gauss-Legendre positions and OWIRS weights 

 

Tables 5: positions and weights of above cases  

 

       N=5    

Gauss-Legendre positions & weights OWIRS positions & weights Gauss- Legendre positions & 
OWIRS weights 

di/(D/2) wi di/(D/2) wi di/(D/2) wi 

0 0.568889 0 0.554092 0 0.562705 

+/-0.538469 0.478629 +/-0.525989 0.470657 +/-0.538469 0.485402 

+/-0.906180 0.236927 +/-0.893646 0.245772 +/-0.906180 0.228094 
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     N=7   

Gauss-Legendre positions & weights 
 

OWIRS positions & weights Gauss- Legendre positions &  
OWIRS weights 

di/(D/2) wi di/(D/2) wi di/(D/2) wi 

0 0.417959 0 0.409876 0 0.420611 

+/-0.405845 0.381830 +/-0.398454 0.375801 +/-0.405845 0.379019 

+/-0.741531 0.279705 +/-0.730661 0.279255 +/-0.741531 0.283085 

+/-0.949108 0.129485 +/-0.941444 0.136455 +/-0.949108 0.124840 
 

 

      N=9 Gauss-Legendre positions & weights        OWIRS positions & weights 

Gauss-Legendre positions & weights 
 

OWIRS positions & weights Gauss- Legendre positions &  
OWIRS weights 

di/(D/2) wi di/(D/2) wi di/(D/2) wi 

0 0.330239 0 0.325159 0 0.328802 

+/-0.324253 0.312347 +/-0.319446 0.308080 +/-0.324253 0.313833 

+/-0.613371 0.260611 +/-0.605335 0.258640 +/-0.613371 0.258953 

+/-0.836031 0.180648 +/-0.827640 0.182040 +/-0.836031 0.182700 

+/-0.968160 0.081274 +/-0.963048 0.086431 +/-0.968160 0.078403 
 

 

3.4 Comparison of positions and weights 

Figure 3 shows the difference of the positions and corresponding weights for all 4 approximations. 

 

 
Fig. 3: path positions and weights for G-L (Gauss-Legendre), G-K (Gauss-Kronrod), OWIRS and Legendre positions 

and OWIRS weights 

 

 

 

4. Analytical examples 

 
4.1 Polynomial profiles 

The theory is first checked with polynomial velocity profiles of increasing order. The choice should reflect in some way 

possible profiles in reality. The restrictions to the profile is that on the two boundaries it should be zero, always positive 

and the number of local maxima at most two. The choice of the polynomials is of the following form: 

 

                             𝑝(𝜁) = (1 − 𝜁2)(1 + 𝑏1𝜁)(1 + 𝑎1𝜁 + 𝑎2𝜁2 + 𝑎3𝜁3 + 𝑎4𝜁4 + 𝑎5𝜁5)2                                 (15) 

 

With b1=0.2 and five different choices of ai: 

 



IGHEM 2018, Beijing, China, September 10-13, 2018  Page 8 

 a1 a2 a3 a4 a5 

3rd order 0 0 0 0 0 

7th order 0 0.7813 0 0 0 

9th order 0 0.7813 0.3 0 0 

11th order 0 0.7813 0.3 0.1 0 

13th order 0 0.7813 0.3 0.1 -0.2 

 

Table 6:chosen polynoms of different orders 

 

 
Fig. 4: graph of chosen polynomials 

 

The test is carried out with the approximation order of N=5.  

 

Polynomial  
order 

Exact integral 
Iref 

Gauss-Legendre Gauss-Kronrod G-L position 
OWIRS weights 

OWIRS 

3rd order 1.33333333 1.33331421    1.33331447 1.33358938 1.33395010 

7th order 1.81975446    1.81973431 1.81973284 1.81950717     1.82215809 

9th order 1.84513542    1.84511532 1.84444705 1.84445123 1.84790271 

11th order 1.87880208    1.87884657 1.87750735 1.87765137     1.88205810 

13th order 1.86605409    1.86691547 1.86659504 1.86605409 1.86985859 
 

Table 6: Discharge measurement of the four cases for the five polynoms 

 

The integration error is computed according to  

                                                                          𝜖 =
𝐼−𝐼𝑟𝑒𝑓

𝐼𝑟𝑒𝑓
100%                             (16) 

 

 

Errror  in % Exact integral 

 

Gauss-Legendre Gauss-Kronrod G-L position 
OWIRS weights 

OWIRS 

3rd order 0 -0.0014    -0.0014     0.0192     0.0463 

7th order 0    -0.0011    -0.0012            -0.0136     0.1321 

9th order 0    -0.0011    -0.0373            -0.0371     0.1500 

11th order 0     0.0024    -0.0689    -0.0612     0.1733 

13th order 0             -0.0176    -0.0348    -0.0637     0.1400 
 

Table 7: errors of discharge measurements 
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Table 7 reflects the expected results in accuracy. The error numbers in bold belong to the cases where the theory tells that 

error zero is to be expected. Therefore errors of less 0.0015% are considered to be numerical errors. The following remarks 

can be made for the four cases: 

 

- Gauss-Legendre: best performance. Up to 9th order polynomials, the error is zero. For higher order a slow increase 

of the error can be observed. 

- Gauss-Kronrod: second best performance. Up to 7th order polynomials, the error is zero. For higher order, the 

error rises up to 2-3 times larger values as for the Gauss-Legendre case. 

- G-L positions & OWIRS weights: Even for small order polynomials, the error is as high as for the G-L case for 

high order polynomials. With increasing order of the polynomials, the error is comparable to the Gauss-Kronrod 

case. 

- OWIRS: The worst performance because the method is optimized for the OWIRS profile. For higher order 

polynomials, the error is ~constant (0.15%). 

 

4.2 Exponential profiles 

In order to check the performance of the methods, an artificial analytical profile was generated of the form: 

 

𝐹(𝑥) = 𝑦𝑚𝑎𝑥(1 − 𝛼𝑒
−

𝑥

𝑇𝑤 − (1 − 𝛼)𝑒
−

𝑥

𝑇𝑖)  x=[0,1]     (17) 

 

The four parameters are chosen, such that a realistic flow profile can be obtained, which is similar to the Gersten Herwig 

profile [11,12]. The maximal value and the value for the representative wall distance were defined accordingly. The inner 

exponential decay rate T2, ymax and were kept constant, while the wall exponential decay rate was varied between 

 

TW=[0.002  0.02  0.04  0.06  0.1];  

T2=0.1; 
ymax=1.23; 
=0.81; 
 

 
 

Fig. 5: exponential profiles, slowest rise corresponds to largest TW 

 

Again, the test is carried out with the approximation order of N=5.  

 

 Exact integral 
Iref 

Gauss-Legendre Gauss-Kronrod G-L position 
OWIRS weights 

OWIRS 

TW =0.002 2.3632 2.3676     2.3674     2.3572     2.3550 

TW =0.02 2.3273 2.3632 2.3578    2.3530     2.3526 

TW =0.04 2.2874 2.3223     2.3056        2.3136     2.3207 

TW =0.06 2.2476 2.2683 2.2520     2.2616     2.2714 

TW =0.1 2.1679 2.1733 2.1652     2.1697     2.1777 
 

Table 8: Integral (discharge) of the four cases for five exponential profiles 
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Errror  in % Exact integral 

 

Gauss-Legendre Gauss-Kronrod G-L position 
OWIRS weights 

OWIRS 

TW =0.002 0 0.1863 0.1803    -0.2536    -0.3450 

TW =0.02 0    1.5441     1.3087               1.1043     1.0875 

TW =0.04 0    1.5246 0.7951           1.1438     1.4537 

TW =0.06 0    0.9201     0.1948      0.6212     1.0610 

TW =0.1 0             0.2507            -0.1239      0.0827 0.4520 
 

Table 9: measurement error of the four cases for five exponential profiles, green: best, red: worst 

 

For this profile, the following can be observed: 

 

- Contrary to the polynomial profiles, this choice of exponential profiles never has Gauss-Legendre as winner. In    

two cases, Gauss-Legendre even shows the worst performance. 

- Surprisingly enough, the Gauss-Kronrod approximation is in three out of 5 cases the best. The reason for these  

results is not yet clear. However, it seems to be that the interlacing positions in between the old Gauss-Legendre 

positions can better cope with the exponential behaviour of the profile. 

- OWIRS behaves badly in 3 out of 5 cases. This is not surprising, as the OWIRS positions and weights are not 

optimized for an exponential profile. 

 

 

5. CFD simulations 

 
CFD simulations were carried out for two types of cross sections and three different flow velocities. The two cross 

sections are: 

- Square shape with side length a=b=1.4m 

- Rectangular shape with 1.5m width a=1.5m and height b=4.5m. 

The velocities v are chosen as 0.2m/s, 2m/s and 10m/s. This results for the Reynolds number 

 

                                                                      𝑅𝑒 = 𝑣
2𝑎𝑏

𝑎+𝑏
106       (18) 

 
the following quantities:  

Square:   𝑅𝑒 = 0.28 ∗ 106        to     𝑅𝑒 = 14 ∗ 106 

Rectangle: 𝑅𝑒 = 0.45 ∗ 106        to     𝑅𝑒 = 22.5 ∗ 106 

 
The simulated square cross section is shown in Figure 6. For the rectangular cross section the length of the conduit is also 

6m. 

 
Fig. 6: simulated square cross section, 1.4m x 1.4m x 6m, 2E10P (two planes with five paths in each plane) 

 

Figure 7 shows contour plot of the axial velocity (x-axis) for the square cross section. It is clearly visible that at the centre 

of the square the maximal velocity is attained. Figure 8 visualizes the secondary flow components. For each simulated 
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cell a normalized vector shows the direction of the flow. As the number of cells along the boundaries is much higher, the 

concentration of vectors along the boundaries is also higher. The absolute value of the secondary flow was very small. 

 

 
Fig. 7: axial velocity contour for square and 2m/s             Fig. 8: secondary flow for square and 2m/s  

  

The simulations were performed with ANSYS CFX 18. The mesh of the conduit is a manually generated structured 

hexahedral mesh. The inlet boundary comprises about 22500 hexahedral elements. Minimum and maximum angles were 

90° and the maximum volume ratio were 1.2. The dimensionless wall distance (y+) is on average about 0.01 (for 0.2 m/s), 

4 (for 2m/s) and 20 (for 10 m/s). The simulations were performed in steady state and with translational periodic boundary 

conditions. The solutions are based on the SST (shear stress transport) turbulence model. The calculations are solved with 

the high resolution advection scheme and automatic timescale. The RMS residuals were lower than 10-12, the maximum 

residuals were at 1.1·10-11, and the imbalance at 4.8·10-12. The simulations required about 300 iterations to reach this 

convergence. The wall roughness was chosen as the one of sand/grain and set equal to 0.1mm  For steel the corresponding 

value would be ten times smaller. 

 
In Figure 9 the 3-dimensional plots of the normalized velocity profiles for the three velocities are shown. From these it 

seems that the shape of the profiles do not change much, especially for larger velocities. This can also be seen in the three 

area flow functions of Figure 10. 

  

 

         
 

Fig. 9: normalized velocity profiles: left 0.2m/s, middle 2m/s, right 10m/s 

 

 
Fig. 10: Area flow functions (AFF): left 0.2m/s, middle 2m/s, right 10m/s 

 

Figure 11 summarizes all the obtained relative error results. The following remarks can be added: 
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a)                                                                                        b) 

 
      c )       d) 

 
       e )       f)  

 

Fig. 11: Relative error curves for all simulated cases 

 

- With increasing number of paths all error curves decrease strongly and slow down for higher number of paths. 

- The Legendre  positions & OWIRS case and the pure OWIRS case behave very similar and are clearly superior 

to the other two cases. Only in the case a): velocity of 0.2m/s and square cross section, the error is with ~0.1% for 

all path configurations constant and relatively high. For low velocities and square geometry, the velocity profile 

seems less to be of the OWIRS type as for higher velocities. For this situation it could be interesting to optimize 

the parameter as was suggested by Gruber & al [13]. 

- It is interesting to note that the Gauss-Kronrod case always performs better than the Gauss-Legendre case. To be 

specific, for N= 5 paths the improvement is ~0.1%,<~0.01% for N=7 and finally ~0,02% for N=9. The reason for 

the obtained type of decrease of improvement is not clear at the moment. 

 

6. Conclusions 

 

In situations, where the accuracy of the ATT multipath discharge measurement in rectangular conduits seems to be not 

reliable enough due to unknown or not removable adverse effects, the method of  increasing the path number is a viable 

option. The strategy should be as follows: 

- If all path positons can easily been shifted then an incremental increase from for instance 4 to 5 path with OWIRS 

positions and weights is for realistic cases the best choice. 

- If all path positons can easily been shifted and in cases of a purely constant weighting function and multiplicative 

polynomial deviations the Gauss-Legendre is clearly the best method.  
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- If the old path positions cannot be moved, the Gauss-Kronrod procedure by interlacing new paths is in realistic 

cases most of the time better than all the other methods. 

- For nonpolynomial and non OWIRS type of profiles (exponential, transcendental (see section 4.2), the Gauss-

Kronrod seems to be a very good alternative, as it even outperforms other repositioned configurations with the 

same number of paths. 
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