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Abstract 

 
Operators of hydro machinery want to use their plants as efficient as possible and in a wide range of operating points. This 

gives them the capability to fulfil the different process demands they are exposed to. The operation in certain operating 

points can however cause cavitation problems. During part load operation of a pump-turbine in turbine mode swirling flow 

in the draft tube can occur. The low pressure in the draft tube and frequency components of the swirl or vortex can lead to 

situations where the unsteady fluctuations may lead to cavitation and other damage of turbine and hydraulic equipment. 

Conventional methods of the detection of the unsteady conditions occurring in the draft tube at part load turbine operation 

are not yet reliable enough in order to distinguish between dangerous and non-dangerous operating points. If a vortex 

related to the swirling flow in the draft tube can be detected and its frequency can be estimated, an important indicator for 

dangerous operating situations of the turbine can be provided 

This paper describes the detection of different cavitating swirl states, normal operating states (pure water states) and 

water/air bubble states. Often cavitation detection is not reliable enough to allow the operators to use their machines in a 

cavitation endangered region. This work deals therefore with the classification of specific potentially dangerous cavitation 

states using ultrasound and pressure signals in combination with operating point information. The method has been applied 

to a small Francis test pump-turbine in a laboratory environment. 

 
 

1. Introduction 

 

In order to integrate renewable energy sources like wind power and photovoltaic into to the energy grid, hyd-ropower 

stations are used to store this intermittent and non-constantly produced energy  Due to the flexible operating possibilities, 

hydropower is also used to dampen frequency deviations of the power grid. In both cases the hydraulic machines such as 

pump-turbines have to operate in pump and turbine modes and under various part load operating conditions as well as 

overload condition.  

The flow instability in the draft tube of a hydraulic turbine, frequently called as “draft tube surging” results from the 

swirling flow (vortex rope) associated with part-load or overload operation of the hydraulic turbine, in our case of the 

pump-turbine.  Draft tube surging is the source of additional noise, severe vibrations, and eventual excessive bearing wear 

in the generator.  When the frequency of swirling flow (vortex rope) coincides with a natural system frequency, the draft 

tube surges can produce big power swings, destructive structural resonance, or uncontrollable penstock pressure changes.  

Therefore, it is very important to determine the frequency of the swirling flow or vortex rope in the draft tube during the 

part load operation.  

If a turbine is operated far from the nominal load condition, complex flow phenomena can occur. In these conditions the 

flow in the draft tube of the turbine does not only have a component in direction of the water flow but also a circumferen-

tial component at the exit of the impeller. This can especially in Francis turbines (because of single regulation) lead to a 

swirl or vortex in the draft tube. The swirling flow has a frequency which lies in the range of the resonance frequency of 

the hydraulic system as mentioned above. If both frequencies are too close to each another high pressure variations might 

occur. These variations can lead among others to cavitation effects. Cavitation is the result of the generation and collapse 

of evaporation bubbles, because of low pressure in the flow. While collapsing, the bubbles can locally generate large 

transient pressure waves, which can damage parts of the turbine. Therefore, it is desirable to find a measurement method, 

which can detect the existence and the frequency of the swirl. Transient pressure sensors at the impeller exit can be used 

for such a detection but its installation is difficult and the mechanical stress is high due to the exposure. Here an alterna-

tive ultrasonic measurement method has been used which is nonintrusive. Before the swirl frequency can be estimated, it 

is however important to detect and distinguish the existence of a vortex from other flow conditions (water states) of the 

turbine operation. The detection is split into the following two subsequent steps: 

1) Different flow conditions are therefore classified first via decision tree methods by exploiting a number of 

measured physical quantities and their characteristics. The way of how the signals are selected and the procedure 

how to find the classification trees will be explained in this paper. The method applied here follows the works of 

([1], [2], [3], [4], [5]) and uses pure statistical signal processing without temporal information.  
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2) In a second step the frequency of a swirl is identified after this condition has been detected by using temporal 

information of the signal characteristics. Results of this step have been reported in [6] and are not presented in 

this paper. 

 

2. Experimental Setup 

 

In the hydro laboratory of the Lucerne University of Applied Science and Architecture, experiments were carried out with 

a model test pump turbine (PT) in turbine mode. The pump turbine is equipped with a large number of sensors such that a 

variety of tests and experiments can be performed. The larger number of measured quantities are used for operating point 

information and are thus averaged, stationary values. A smaller number of measurements are used for transient 

measurements. Both types of measurement quantities are listed in Table 1. All data points were acquired by a Labview 

software environment with the exception of the ultrasonic measurement which were recorded by an oscilloscope. 

 

Table 1: All data acquisition points and physical quantities of the model test pump turbine 

Operating point, averaged quantities Transient measured quantities  

Rotational speed N [1/s] Pressure at draft tube                          (1=position) 

Torque  Pressure at spiral case                         (2) 

Angle guide vane (LA) Pressure at pressure side                     (3) 

Pressure difference Δp across the turbine [Pa] Pressure entrance to impeller (runner)  (7x)  (6) 

Relative pressure of pressure side to ambient pressure  accelerometer draft tube (2x)              (4,5) 

Volume flow of turbine V̇ [m3/s] Ultrasonic sensors                               (7) 

Water temperature 

Ambient temperature, pressure and humidity 

Quadrant 

Flows of various hydraulic supply pipes 

Rotational speeds of various supply pumps  

 

A schematic drawing and a picture of the test machine is shown in Fig.1a & 1b. The averaged quantities are steady state 

measurements of a turbine, while the transient measurements contain information of time dependency, frequency content 

and statistical parameter of the recorded signals. The draft tube consists of a cone of 300mm inlet diameter made out of 

plexiglass.  

 

 

 
a)                               b)  

Fig.1. a) schematic drawing of turbine with transient measurement positions b) photo of the pump turbine test rig  

 

 

3. Operating point information for classification of water condition 

 

After an extensive analysis of all acquired operating point information the following two dimensionless parameters Φ (PHI) 

and Ψ (PSI), used for the characterization of the operation of turbines, have been selected for the classification:  

 

 

Φ =
�̇�

𝑁 ∗ 𝐷 ∗ π ∗ D2 ∗
𝜋
4

=
�̇�

𝑁 ∗ 𝐷3 ∗
𝜋2

4

 
D:  

ρ: 

 

 

 

Impeller outer diameter  

density 

[m] 

 [kg/ m3] 

 



IGHEM 2018, Beijing, China, September 10-13, 2018  Page 3 

Ψ =

Δ𝑝
𝜌 ∗ 𝑔 

(𝑁 ∗ 𝐷 ∗ 𝜋)2

2 ∗ 𝑔
 

=

Δ𝑝
𝜌

(𝑁 ∗ 𝐷 ∗ 𝜋)2

2
 

=
Δ𝑝

𝑁2 ∗ 𝐷2 ∗ 𝜌 ∗
𝜋2

2

 

 

 

 

 

Φ is linear in V̇ and inverse dependent on N, Ψ is linear in Δp and inverse dependent on the square of N, that means on 

flow, rotational speed and pressure difference. More than 20 operating points are also indicated in the diagram. These 

operating points were classified into 4 water condition states: clear water, water and gas, pulsating swirl, stable periodic 

swirl. 

 

 
Fig. 2:  Characteristic curves for constant guide vane (LA) opening in the Φ-Ψ-plane and the operating points for the 

measurement campaigns, measurement points indicated by single colored dots, red area swirl region from [7] 

 

 

The interesting and usable states of the machine in this measurement campaign have been identified as:  

 

- clean water    operating points OP1-11,17,18 total 44 data sets  

- water and gas (air bubbles)  operating points OP13,23  total   8 data sets 

- stable swirl in the draft tube  operating points OP19-22  total 16 data sets 

- pulsating swirl in the draft tube  operating points OP14-16  total 12 data sets 

Total number of training data sets             80 data sets 
 

Each operating point OP consists of 4 signal sets of 50 signals  

 

 

4. Transient measurement points for classification 

 

4.1 Pressure signals 

Of the transient pressure and acceleration measurements, the most useful ones were the pressure measurements at the 

impeller inlet. From this transient signals the intensity Iimpeller,f1 of the first harmonic in the frequency domain was used as 

a classification parameter. With the use of Φ, Ψ, and Iimpeller,f1 the training of decision trees by the Tree Bagger method (see 

section 5) was possible.  

Figure 3 shows the spectrum of the pressure signal for operating point 3 (clean water) and 20 (stable swirl). The large 

change of the 7Hz amplitude (normalized 1st harmonic of  a pump-turbine with 7 blades) is clearly visible.  
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Fig 3: Frequency spectrum of transient pressure sensor (impeller inlet) without (left) and with (right) swirl 

As the implementation of the pressure sensor is difficult to achieve in a real machine, additionally ultrasonic signals of 

the draft tube were investigated for possible substitutes of the transient pressure measurements at the impeller. 

 

2.2 Ultrasonic signals 

As can be seen from Fig.1 the 500kHz ultrasonic transducers provided by Rittmeyer Ltd are mounted from the outside in 

a clamp on fashion to the transparent draft tube. This involves a minimum effort in installation time and the sensors are not 

directly exposed to the pressure variations. This is in contrast to the different transient pressure measurement transducers 

at the impeller (runner) inlet. The ultrasonic signals are of a pulse shape (wavelet) and are periodically sent through the 

water with a repetition rate of up to 100Hz, where water can be disturbed by for instance a swirl or by cavitation bubbles. 

If the pulses are sent through undisturbed (clean) water (no air bubbles, particles, cavitation bubbles, swirl, etc.) the 

variation of individual recorded signals is small. Figure 4 shows 200 recorded signals over time for clean water conditions. 

From Figure 5 it is clearly visible that under disturbed water conditions (e.g. cavitation), the shape of the receiving pulses 

change from one recording time to the next one. If these variations are analysed in the time, frequency and correlation 

domains in a statistical way, the transient pressure measurement analysis can be replaced by some characteristic para-

meters of this analysis. It can even surpass the results obtained by the former choice. A similar approach had been 

investigated by [8]. 

 

 
 

Fig. 4: Ensemble of signal shape (amplitude) of the recorded ultrasonic pulses over time for clean water conditions 

 

 

 

 

OP03 pressure sensor impeller inlet OP20 pressure sensor impeller inlet 

            f[-] normalised with rotational speed of pump turbine 

Operation in clear water conditions 
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Fig. 5: Ensemble of signal shape (amplitude) of the recorded ultrasonic pulses over time under cavitating conditions 

 

 

5. Extraction of statistical ultrasonic signal parameters (characteristics) 

 

5.1 Statistical signal parameters for raw signal 
For each operating point in each test series hundreds of signals (500kHz pulses) have been recorded. If they are disturbed 

by not ideal water conditions, various quantities of the signal change: amplitude (signal maximum), time of arrival of signal 

maximum, frequency content and power. As the distortions do not occur continuously in time, the signals recorded 

sequentially experience different levels of random distortions for the different water states. Statistical signal processing is 

therefore a good way to analyze the behavior. Histograms of various quantities are the first step for the investigation. Figure 

6 shows histograms of groups of 100 signals. All the signals were preprocessed to remove outliers and signals with very 

low signal level. For clean water conditions the maximal amplitude is mainly centered around 0.048Volt while for the 

disturbed case the distribution is broader and the values much smaller (0.006Volt to 0.011Volt). In the Appendix a sample 

signal (Figure A1) is shown and 15 statistical signal parameters defined and listed in Table A1. 
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Fig. 6: Histogram of 100 measurements of amplitude: upper: undisturbed, lower: disturbed (draft tube swirl) 

 

 

5.2 Statistical signal parameters for correlation function 

An interesting function to examine is next to the individual ultrasonic signals, the correlation of each incoming signal with 

a reference signal that corresponds to a signal obtained under undisturbed conditions. In contrast to the signal analysis of 

the previous section, characteristic parameters of two signals are evaluated and compared to one another, if correlation is 

applied. Figure 7 shows some examples of computed correlation function for undisturbed and disturbed signals. As for the 

individual signals a sample correlation function (Figure A2) is shown and 23 statistical signal parameters defined and listed 

in Table A1 of the Appendix. 

 
Fig 7: samples of correlation functions: upper left undisturbed signal, other signals: different degree of disturbance 
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6. Classification by decision trees 

 

There exists a variety of classification methods like nearest neighbours method, case based methods, neural networks or 

rule based methods (Etterlin [1], Lerch [3], Gruber [4], Duda [9], Theodoridis [10], Hand [11]). In this study binary decision 

tree methods were used. Decision trees are a hierarchical structure of rules that have to be trained and validated. The 

training results in trees with a certain complexity and structure. Each nod of a binary decision tree contains a binary decision 

formulated as a condition with a threshold for a selected statistical or operating point parameter (see section 4.1 and 5.1 / 

5.2).  

 

6.1 Single tree versus Bagged-Tree model 

The main requirement for a decision tree model is to predict correctly the state of the monitored plant if the model is fed 

with statistical and operating point parameters obtained from measurement data of the plant. In order to achieve a high 

probability of a correct prediction, the tree model has to be trained with representative training data. In real applications, 

the training data measurements might vary considerably. Therefore, a certain robustness of the tree model is required. If a 

single tree model is used, the robustness is limited due to the limitations of the training data and/or overfitting. In the ideal 

case that the training data are complete, that means for every possible situation the outcome is known, a single tree could 

be trained. As this situation is not fulfilled in most real applications, an extension of the single tree method has been 

developed by L. Breiman [12] that can cope better with uncertainty by enhancing robustness and predictability. This method 

is called Bagged-Tree model. The prize to be paid is an augmented complexity in terms of training and implementation. In 

the works of Frei [1] and Agner [5] both approaches have been applied to the cavitation detection problem.  

 

6.2 Bagging 

Bagging is an abbreviation for Bootstrap Aggregation. Bootstrapping is a method used in statistics. It works as follows: 

For a given set of N data sets, m new subsets are built. Each of these subsets contains N‘ data sets of the original N data 

sets. The picking of the individual data sets for each of the m subsets is done randomly. After each pick, the selected data 

set is put back in the original data set. That means, that a specific data set can be picked several times for a given subset. 

Figure 8 shows in example a realization how m=4 subsets containing each N’=5 data set of the original N=8 data sets are 

built. The subsets are called ‘bootstraps’, the total model containing all trees ‘ensemble’ or ‘Bagged-Trees’. For the 

cavitation detection problem each data set corresponds to one of the 80 training data sets (section 2) [13, 14].  

RANDOM

RANDOM

RANDOM

RANDOM

Response

State of the water with 
the corresponding 
parameter values

 

Fig. 8: Ensemble of Decision-Trees of a Tree-Bagger Model 

 

For each subset, a single decision tree is trained. Additionally to the randomness of the selected sub-sets, the number of 

training parameters is also restricted for each split of a tree. The number of randomly chosen parameters for one tree is the 

nearest integer to the geometric mean between 1 and the total number of parameters taken into account (pump-turbine 

example: total number of parameters is 41, therefore the number of randomly chosen parameters is  at most √41 = 6.4). 

The training of the Bagged-Tree model is done by the command TreeBagger() of Matlab [8]. After the training of all m 

trees, this ensemble of parallel classifiers is applied to new incoming data in the following way: Each tree is fed with the 

required input parameters and produces a resulting detected class. The final result or response of the ensemble classifier is 

the class that has been identified by the relative majority of the individual trees.  
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6.2.1 Out of Bag Error und parameter importance 

An important measure for the reliability of a Bagged-Tree model is the Out of Bag Error (OOBError). As data sets of the 

basic set are picked randomly for the subsets, it will be most unlikely, that all data sets will be used a tree. The left out data 

sets are the so called Out Of Bag (OOB) samples or sets. They can be used for validation of the trained tree model. The 

outcome of the validation is a measure of the robustness of the model to unknown new data.  

Another important measure obtained from the OOB samples is the importance of the input parameters. If a single decision 

tree is used, it is easy to find out the importance of the parameters: the parameters used in the final tree are the important 

ones. If an ensemble of 50 or more trees is used, the evaluation of the importance of the parameters is not evident. Matlab 

offers for both cases the possibility of an importance measure by computing the ‘OOB Permuted Predictor Delta Error’. 

Imagine that you take a single parameter, and you randomly reorder (permute) all of its values in the OOB samples, while 

keeping the rest of the dataset in the same order. The error across the ensemble of subtrees of the classifier is computed by 

averaging.  

If parameter values can be interchanged in between the OOB Samples without an increase of the classification error, this 

parameter is of low importance. If however the error increases significantly by the permutation, the importance of this 

parameter is high. Figure 12 is an example of such an evaluation. To be absolutely sure that a parameter has no influence, 

one has to train a model without using this parameter and checking the outcome of the classifier. 

 

6.2.2.Overfitting 

Overfitting refers to a model that models the training data too well [15]. It happens when a model learns the detail and 

noise in the training data to the extent that it has a negative impact on the performance of the model to new data. This 

means, that the noise or random fluctuations in the training data are picked up and learned as features of the model. The 

problem is that these overtrained models do not apply to new data and negatively influences the models ability to generalize. 

Overfitting is more likely with nonparametric and nonlinear models that have more flexibility when learning a target 

function. As such, many nonparametric machine learning algorithms also include parameters or techniques to limit and 

constrain how much detail the model learns. For example, decision trees are a nonparametric ma-chine learning method 

that is very flexible and is subject to overfitting training data. This problem can be addressed by pruning a tree after training 

in order to remove some of the picked up details. Therefore, the chance of overfitting of a single tree is high. In contrary, 

Breiman [12] has shown that even a high number of subtrees in a Bagged-Tree model does not lead to overfitting due to 

randomization. Figure 9 shows how the OOBError is changing with the number of trained subtrees for ultrasonic data from 

another experiment [2]. 9 Bagged-Tree models from 30 up to 230 subtrees have been trained. It is easily visible that the 

OOBError converges to a small constant value. 50 trees seem to be good enough. 

  

Fig. 9: Out of Bag Error (OOBError) and overfitting versus number of subtrees (complexity of the classifier) 

 

6.3 Validation of measurement data 
As mentioned before, the reliability of a classifier must be validated by OOB samples or separate validation sets. In the 

following, the validation is done by the so called ‘Holdout’. The total available data set is split into two sets: 1) a validation 

set, that means data ‘holdout’ from training (fraction given in % from 10% up to 80%) and 2) a training set with the 

remaining data sets. After the training is completed, OOB samples might be present in the training set. These are not used 

for the validation of the trained classifier. The result of the classifier fed with the validation set is then compared with the 
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correct class.  A ‘Holdout’ of 10% means that 90% of the data are used for training, while 80% ‘Holdout’ means only 20% 

training data. Figure 10 explains the splitting procedure. 

 

Training of 
TreeBagger and single 

Decison-Tree

Stat. Parameter & 
operational parameters

split 
10..80%

Validation data

Classification of 
validation data

Comparison of 
classification with 

correct classes 

DT model

Validation
data

Predicted 
classes

Correct classes

Classifikation error

 
Fig. 10: Data split for training and validation  

 

In the following example, a single tree classifier and a Bagged-Tree classifier are compared if the ‘Holdout’ percentage is 

steadily increased. The Tree-Bagger model was trained with 50 trees, and the training has been repeated 200 times and 

then averaged in order to obtain a statistical significant error result. As can be seen from Figure 11, the error rate increases 

faster as a function of the ‘Hold-out’ rate if only a single tree is used in comparison to a Bagged-Tree model. The increase 

of reliability for the Bagged-Tree model must be paid by an increase in training time, a larger software code and a higher 

classification time. 

 

 

Fig. 11: classification error as function of Holdout percentage 

The classification time of a Bagged-Tree model in Matlab is substantially higher as can be seen in Table 2 for a 

classification of 100 data sets.  

 

 time 

single DecisionTree 1.4ms 

Tree-Bagger 86.5ms 

Table 2:  execution time for classification 

The difference is large, but for hydropower application not of importance. The data acquisition and storage of e.g. 50 

transient signals uses more time than the classification.  

 
7. Classification of the pump-turbine measurements 

 
Single decision tree models and Tree-Bagging Tree models were trained and validated with the following features: 

- Out of the total 80 data sets (see section 3), 70% (56) are used for training and 30% (24) for validation.  

4 water states (clean water (W), water & gas (G), stable swirl (WZ), pulsating swirl (PZ)) 

- The total number of parameters per data set is 41:  

38 ultrasonic parameters, 1 pressure parameter (transient measurements) 

2 operating point parameters (static measurements) 

- The Bagged-Tree model has 50 trees  

- The training and validation is repeated 500 times 

- Single and Tree-Bagged tree models have been trained for the following parameter sets 

1) 2 static operating parameters Φ, Ψ and 1 transient pressure parameter I_FFT_p_Impeller 

2) Only 38 ultrasonic statistical parameters 
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3) 38 ultrasonic statistical parameters and transient pressure parameter I_FFT_p_Impeller 

4) 38 ultrasonic statistical parameters and 2 static operating parameters Φ, Ψ 

5) all 41 parameters 

- For each parameter set the importance of the individual parameters are  evaluated (‘OOB Permuted Predictor 

Delta Error’) 

- For each parameter set a normalized confusion matrix which visualizes the performance of the classification is 

build. For a perfect classifier the matrix corresponds to the identity matrix as shown in Table 3. 

 

  actual class 

  W WZ PZ G 

P
re

d
. c

la
ss

 W 1.00 0.00 0.00 0.00 

WZ 0.00 1.00 0.00 0.00 

PZ 0.00 0.00 1.00 0.00 

G 0.00 0.00 0.00 1.00 

  1.00 1.00 1.00 1.00 

Table 3: Confusion matrix for perfect classification 

 
In the next section, case 2) and case 4) are presented in detail. The other cases do all include the measurement of the tran-

sient pressure at the impeller inlet, which is difficult to install and to maintain. Therefore, they are not presented here al-

though the results for these experiments were comparable to the two considered cases. 

 

7. 1 Classification with Ultrasonic signals (US) only 

First parameter choice was the use of ultrasonic (US) signal parameters only. Figure 12 shows the importance graph for all 

38 statistical parameters of the ultrasonic signal. It is clearly visible, that the majority (~23) of the parameters are of small 

importance (value are smaller than 0.25). 10 are larger than 0.35 and the remaining 5 are in between. The most important 

parameters are: 

 
1 Laufzeitmittelwert  mean_time  signal parameter, time domain 

2 mean_Area_r_div_mean_Area_l correlation parameter, time domain 

3 mean_dt_1_pks  correlation parameter, time domain 

4 std_dt_1_pks correlation parameter, time domain 

5 std_mean_A_FT_sigma_s_1 signal parameter, frequency domain 

6 std_A_abs signal parameter, time domain 

7 mean_dt_2_pks  correlation parameter, time domain 

8 mad_A signal parameter, time domain 

9 mean_s_r  correlation parameter, time domain 

10 mean_skew_corr correlation parameter, time domain 

 

Table 4: parameter ranking for US Bagged-Tree  

 

Fig. 12: Parameter importance for US only Bagged-Tree model 
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Fig. 13: Example of a single tree; only two parameters are needed 

 

 
 

 

 
   

  

 

   

  

Table 4: Confusion matrix for single tree US only                 Table 5: Confusion matrix for Bagged-Tree model US only 

 

      Figure 13 shows an example of a single trained tree of low complexity.  Tables 4 & 5 show the performance of the two 

approaches, where the differences between one and the numbers in the diagonal multiplied by 100% give the error rate per 

water state.             

  
7. 2 Classification with Ultrasonic signals (US) & Φ, Ψ 

The most important parameters in this case are listed in Table 6 and their importance in Figure 14. An example of a de-

cision tree is given in Figure 15. Figure 15 shows that in the case US & Φ, Ψ parameters, particular trees out of the 50 need 

US signals only, as is the case of the shown tree. Other trees are fed with important parameters of Table 6. Most trees have 

however a simple structure and need not more than 3 or 4 parameters. Table 7 and Table 8 show the confusion matrix for 

both cases. 

 
1 Laufzeitmittelwert  mean_time  signal parameter, time domain 

2 std_dt_1_pks   correlation parameter, time domain 

3 mean_Area_r_div_mean_Area_l  correlation parameter, time domain 

4 std_A_abs   signal parameter, time domain 

5 freq_A_FT_mean_s_1 signal parameter, frequency domain 

6 mean_dt_1_pks   correlation parameter, time domain 

7 PSI  Operating point parameter 

8 mean_dt_2_pks   correlation parameter, time domain 

9 mad_A  signal parameter, time domain 

10 PHI Operating point parameter 

 

Table 6: parameter ranking for US & Φ, Ψ Bagged-Tree model 
 

  single tree US only 

  W    WZ PZ G 

P
re

d
ic

te
d

 W 0.9570 0.0000 0.1397 0.0000 

WZ 0.0133 0.9034 0.0450 0.1098 

PZ 0.0151 0.0009 0.7731 0.0008 

G 0.0145 0.0957 0.0422 0.8894 

  Bagged-Tree US only 

  W   WZ PZ G 

P
re

d
ic

te
d

 W 0.9982 0.0000 0.1157 0.0000 

WZ 0.0000 1.0000 0.0000 0.0016 

PZ 0.0006 0.0000 0.8723 0.0048 

G 0.0012 0.0000 0.0120 0.9935 
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Fig. 14: Parameter importance for US & Φ, Ψ Bagged-Tree model 
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Fig. 15: Example of US and Φ, Ψ tree; only 2 parameters are needed 

 

  Single Tree US PHI PSI 

  W WZ PZ G 

P
re

d
ic

te
d

 

W 
0.9570 0.0000 0.1397 0.0000 

WZ 
0.0133 0.9034 0.0450 0.1098 

PZ 
0.0151 0.0009 0.7731 0.0008 

G 
0.0145 0.0957 0.0422 0.8894 

  
    Table 7: Confusion matrix for single tree US & Φ, Ψ       Table 8: Confusion tree for Bagged-Tree US & Φ, Ψ 

 

7. 3 Comparison and Interpretation 

The comparison of the performance reveals the following facts: 

1) The single tree method is for both cases inferior to the Bagged-Tree method by margin of 5-10% depending on 

the detected state. The performance of the single tree method is the same for the US only and the US & Φ, Ψ 

configuration. The Bagged-Tree method works nearly fault free. 

2) The performance of the US & Φ, Ψ configuration over all states is slightly better than the US only configuration 

(~0.35%).  Only the detection of pulsating swirls (PZ) is slightly worse than the US only configuration (~0.29%).  

3) The parameter ranking tables show some interesting observation: 

a) Seven out of the ten most important parameters, marked in italics, are for both considered configurations 

the same: 3 signal parameters in the time domain and one in the frequency domain, and 3 correlation 

parameters in the time domain. 

  Bagged-Tree US PHI PSI 

  W WZ PZ G 

P
re

d
ic

te
d

 

W 
0.9996 0.0000 0.1203 0.0000 

WZ 
0.0000 1.0000 0.0000 0.0000 

PZ 
0.0004 0.0000 0.8694 0.0016 

G 
0.0000 0.0000 0.0103 0.9984 
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b) The operating point parameters appear in the US & Φ, Ψ configuration case in the list of the ten most 

important parameters (position 7 and 10 in bold). So one can conclude that they contribute to the better 

performance of the US & Φ, Ψ configuration compared to the US only configuration. For the single tree 

method, no improvement could be found. 

c) For the other three parameter choices mentioned above, similar conclusions can be drawn.  

d) To analyse the number of parameters and their choice one would need to evaluate all configurations in a 

systematic way. This has however not been done. From the obtained results, a good selection of parameters 

could be: 

1) One or two US signal parameters in the time domain (maybe one additionally in frequency domain) 

2) One or two US correlation parameters  

3) Φ and Ψ 

4) Transient pressure signal parameter in the frequency domain, if available 

So the number of parameters could be restricted to 4 up to 8. 

  

It is to be noted, that the performance is dependent on the validation method. If the ‘Holdout’ is larger, clearly the Bagged-

Tree models would perform worse. Additionally, the available number (80) of data set is rather small. A larger collection 

of data sets are therefore highly recommended. 

 

8. Conclusions 

 

The Bagged-Tree model for classifying seems to be a very promising method for monitoring the water states in a pump-

turbine. At least in the case of the test pump-turbine at the HSLU hydraulic laboratory good results were obtained. The 

ultrasonic measurements mounted in a clamp-on fashion to the draft tube are able to capture important information about 

cavitation and gas bubble states of the water that operating point information cannot deliver. The installation of such a 

measurement set up is in contrast with the mounting of transient pressure sensors at the inlet of the impeller, easy. If 

additionally other measurements are available (accelerometer, hydrophones, vibrations, noise,..), they can be added to the 

classifier scheme without difficulties. Further investigations with a turbine, pump or pump-turbine in the field are high on 

the agenda. 
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Appendix 

 

Definition of all 41 input parameters for Classifier: 

 
Fig. A1: typical ultrasonic signal  Fig. A2: correlation function with characteristic parameters 
 

Statistical signal parameters 

Signal parameters in 
the time domain (12) 
mean_A  
std_A_abs  
std_A_rel  
   skew_A  
kurt_A  
median_A 
MAD_A 
mean_time   
 
std_t_abs  
 
std_t_rel  
skew_time  
   kurt_time  
 
Signal characteristics in 
the frequency domain (2) 
  freq_A_FT_mean_s_1  
  std_mean_A_FT_sigma_s_1 
 
Signal characteristics in the 
time/frequency domain (1) 
Intensity_mean  
 
characteristics of correlation 
function (23) 
Main peak (1) 
mean_dt_1_pks  
std_dt_1_pks  
mean_A_1_pks  
std_A_1_pks  
peak (2) 
mean_dt_2_pks  

 
 
  Amplitudenmittelwert / mean of maximum of signal  amplitude   
  standard deviation of maximum of signal amplitude 
  coefficient of variation 
  skewness of maximum of signal amplitude 
  kurtosis of maximum of signal amplitude  
  median of maximum of signal amplitude 
  median of absolute deviations from the median_A 
  Laufzeitmittelwert von Anfang Messfenster/ mean of arrival time of  
  maximum of  signal amplitude from time of recording in microsec 
  standard deviation of arrival time of maximum of signal  
  amplitude 
 coefficient of variation of arrival time of maximum of signal amplitude 
 skewness of arrival time of maximum of signal amplitude 
 kurtosis of arrival time of maximum of signal amplitude 
 
 
 
  frequency for which the mean of the contribution is maximal 
  mean of standard deviation of each frequency contribution  
 
 
 
 signal intensity (power) 
 
 
   
 
 mean of time difference to middle position of main peak in seconds 
 standard deviation of time difference in seconds 
 mean of amplitude maximaum of main peak  
 standard deviation amplitude maximum of main peak  
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std_dt_2_pks  
mean_A_2_pks  
std_A_2_pks 
peak (3) 
mean_dt_3_pks  
std_dt_3_pks  
mean_A_3_pks  
std_A_3_pks  
 
dt_2/dt_3  
A_2/A_3  
mean_Area_l  
mean_Area_r  
mean_Area_r_div_mean_Area_l  
mean_s_l  
mean_s_r  
s_r/s_l  
mean_var_xcor  
mean_skew_xcor  
mean_kurt_xcor  
 
 
Transient pressure signal 
characteristic 
I_FFT_p_Impeller 

 
 
 
 
 
 
 
 
 
mean_dt_2_pks /  mean_dt_2_pks 
mean_2_3_pks / mean_A_3_pks 
mean of left side Integral of left absolute value of correlation  
mean of right side Integral of left absolute value of correlation  
 
mean of center of gravity of left side area  
mean of center of gravity of right side area  
 
mean of variance of correlation function  
mean of skewness of correlation function 
mean of kurtosis of correlation function  
 
 
 
 
mean of intensity of first harmonic 

 
Operating point parameters: static measurements of flow, rotational speed and pressure difference 

Φ (PHI)  
Ψ (PSI 

linear in V̇ and inverse dependent on N,  
linear in Δp and inverse dependent on the square of N,  

 
 

 


