The 12th International Conference on Hydraulic Efficiency Measurement (IGHEM 2018)

On-Site Performance Test for a Small Scale Variable Speed Hydropower System

September 12, 2018

Yong-Chae JEONG, <u>Yong CHO[†]</u>, Jong-Woong CHOI, Hyun-Dong KIM, Seung-Yeol Yoo, Tai-Young CHO, and Young-Il KIM

Motivation

- Increase of small hydropower
 - High variation of flow rate
 - Swage treatment plant
 - Widely used by general citizen
- Small hydropower system that citizen want
 - No manual operation
 - Continuous operation automatically although discharge rate is so low
- Variable speed hydropower system
 - Turbine speed variation with high efficiency
 - Produced frequency is varied with rotational speed.
 - Power converter system is needed to connect to the grid.

Investigation of proper site

- ✓ Some of the discharged water flows to the water treatment plant and the rest of water flows to river.
- ✓ The rest water is able to be used by a variable speed SHP.
 - ✓ Gross head : 11.28 m
 - \checkmark Max. flow rate : 6.72 m³/s

Yongdam 1st HPP

Construction Plan

For field testing

- Electromagnetic flowmeter (D800)
 in the straight pipe line
- Differential pressure transducer between inlet casing and draft tube

Runner Design

Manufactured Runner & Draft Tube

Runner

견적용

Draft tube

Guide vanes & Additional Parts

Guide vane

Control device

Thrust bearing

Design of PMSG

Output Voltage	Output Current	Output Power	Copper Loss	Core Loss	Efficiency
[Vdc]	[Adc]	[kW]	[kW]	[kW]	[%]
904	120.8	109.2	1.18	1.25	97.8

Performance Test of Generator

150kW dynamo testing system

longue de Enterency for Various lou

% Max. efficiency : 95.54%

Design of Power Converter

Circuit diagram for a power converter

Performance Test of Power Converter

	Test i	tems		100
	Insulation resistance		THD	90
Insulation	Withstand voltage	Steady state characteristics	Leakage current	80
			Efficiency	70
			-	60
전역변환				50 5%
		Teres a	111111	정격전력 5%
	ALERCA TONNAL TON			효율 88.64
3	SAIN Y L	120kVA 급 변압기 500V→65	90V 160kW급 부하기	→ Euro e
				$\eta_{EU} = 0.03 \eta_{5\%}$
				$\eta_{EU} = 0.03 >$
			1 per son and	+0.10
		and the state of t		$\eta_{EU} = 95.68$

Performance testing equipment for a power converter

	90 -		_	/						
[%]	80									
1 d	70									
	60									
-	50 효율	5 88	%	10% 93.28	15% 94.79	20% 95.4	30% 96.05	50% 96.42	75%	100% 95.69
								·		
정기	격전	력	5	5%	10%	20%	30)%	50%	100%
	वे के		88.	64%	93.28%	95.40%	96.	06%	96.42%	95.69%

Efficiency for loads

fficiency

$\eta_{EU} = 0.03\eta_{5\%} + 0.06\eta_{10\%} + 0.13\eta_{20\%} + 0.10\eta_{30\%} + 0.48\eta_{50\%} + 0.20\eta_{100\%}$
$\begin{split} \eta_{EU} \! = \! & 0.03 \!\times\! 88.64\% \!+\! 0.06 \!\times\! 93.28\% \!+\! 0.13 \!\times\! 95.40\% \\ & + \! 0.10 \!\times\! 96.05\% \!+\! 0.48 \!\times\! 96.42\% \!+\! 0.20 \!\times\! 95.69\% \end{split}$
$\eta_{EU}\!=95.68\%$

*** EU efficiency : 95.68%**

Licensing & Construction Plan

- Vertical propeller turbine
- 98kW power, 380V, 60Hz
- Approval for construction plan
- Installation & pre-service inspection

<page-header><text><section-header></section-header></text></page-header>	전 1 1201-020 호 반전 사업허가중 ** 최 8(6교자) 전 호· 한국수자원전사 연락 : 1945년 8월 3021 ** 정 호((편집 정전)) * 전 호· 한국수자원전사 연락 : 053-030-032 (편집 정전)) * 전 가 변경 전 한 전 한 전 한 전 한 전 ** 전 한 전 한 전 한 전 한 전 한 전 ** 전 한 전 한 전 한 전 한 전 한 전 전 전 51.79- ** 전한 전 한 전 한 전 한 전 한 전 전 전 51.79- ** 전한 전 한 전 한 전 한 전 한 전 전 전 51.79- ** 전한 전 한 전 한 전 한 전 한 전 전 전 51.79- ** 전한 전 한 전 한 전 한 전 한 전 전 전 51.79- ** 전한 전 한 전 한 전 한 전 한 전 전 전 2012 (1951 2022) ** 전 가 북 도 ** 전한 전 한 전 한 전 1 등 전 전 한 전 전 2 (1971 197 197 2) 후 전 한 전 한 번 전 3 2 2 197 전 라 북 도 ** 전 한 북 도 ** 전 ** ** ** ** ** ** ** ** ** ** ** **	A C A A C A C A C A C A C A C A C A C A	<page-header><page-header><section-header><image/><section-header><section-header><form></form></section-header></section-header></section-header></page-header></page-header>	<image/> Provincing of the set
Licensing for electric	Licensing for power	Approval for	Approval for change	Approval for electricity
utility	generation	construction plan	of construction plan	supply to the grid

Flowmeter Calibration

0.04% rel. std. uncertainty with a calibration standard

Construction

Control System Development

- ✓ Automation
- ✓ Safety control for emergency

Lab. Test for 1st Designed Turbine

Testing facility

Power analyzer & safety equipment

Test Results

			Pov	ver out	tput		
Diso (m	charge n³/s)	Head (m)	Speed (rpm)	Hydraulic Power (kW)	Voltage (V)	Current (A)	Power (kW)
0.	.279	2.35	384.5	6.41	322.67	5.56	2.94
0.	.306	2.74	435.3	8.19	364.60	6.25	3.73
0.	.336	3.16	492.5	10.36	411.47	6.99	4.71
0.	.361	3.53	545.4	12.45	454.59	7.68	5.70
0.	.391	3.98	603.5	15.18	502.05	8.43	6.90
0.	.418	4.41	660.8	17.97	548.11	9.13	8.14
0.	.443	4.80	710.3	20.75	587.71	9.73	9.29
0.	.459	5.10	739.2	22.81	611.22	10.14	10.05
0.	.473	5.33	770.6	24.60	635.62	10.48	10.79
S p e d r p m]	1000.0 900.0 800.0 700.0 600.0 500.0 400.0 300.0 200.0 100.0 0.0				· 회전 - 호đ	수[rpm] [kw]	12.00 P 10.00 P 0 8.00 w 6.00 e 4.00 r k 2.00 w 0.00
	0.	.100	0.200	0.300	0.400	0.50	0
				uschargelm	2/2]		

Runaway speed

Discharge (m³/s)	Head (m)	Speed (rpm)	Hydraulic Power (kW)	Voltage (V)	Current (A)	Power (kW)
0.252	0.97	487.6	2.39	427.00	0.00	0.00
0.280	1.16	546.3	3.18	478.13	0.00	0.00
0.308	1.36	602.7	4.07	527.22	0.00	0.00
0.337	1.59	662.1	5.21	578.60	0.00	0.00
0.363	1.84	717.5	6.51	626.29	0.00	0.00
0.392	2.12	776.3	8.09	676.90	0.00	0.00
0.419	2.37	831.3	9.68	723.65	0.00	0.00
0.445	2.67	884.2	11.59	768.55	0.00	0.00
0.477	3.00	948.9	13.94	823.21	0.00	0.00

Model Testing Results

Cavitation Curve

Implementation of MPPT Control

Max. Power Point Tracking (MPPT)

- Perturbation & Observation (P&O) MPPT
- **Incremental Conductance MPPT**

(Hasanien & Muyeen, IET Generation Transmission & Distribution, 2015)

Field Testing

Preliminary field testing with a large power loader instead of a power converter

Variable Speed Characteristics

GV control

Resistance control

Test results of variable speed characteristics

 Discharge rate, dP, power output, rot. speed is varied by GV and resistance control.

Check of Power Output

GV control

Max. power output at GV angle of 47°

Pre-Test around Rated Speed

- High efficiency at low GV angle
- Discharge increase at high GV angle
- Power increases as speed increases
- Max. power at intermediate GV angle of 50° or 53°

Hill Curves for Pre-Test

Efficiency

Discharge rate

Power

Max. Power Test

Efficiency

Discharge rate

Power

- Over the rated speed to 1,260 rpm
- As the speed increases
 - Efficiency ↓
 - Discharge rate ↑
 - Power has a peak at GV angle of 43°

Narrow-band Hill Curves

1200

Rotational Speed (rpm) 0001 0001

900

Min. Power Test

Micro Hydro Poweił Sys	20m	전역/유압화면	2314	12-4(#) 10-14	18
전력 변환	환기	4	차		
DCV 지령값	650 v	수차 차압	(0.140 bar	
발전기 RPM	300 rpm	유량	(0.187 cms	
출력 전압	387 v	유압 모터	ON	OFF	
출력 전류	4 A	사태 유입	모터	기동증	
출력 전력	2.7 kw	3 대 정	상		
발전기진동	0.2 mm/s				
CV	IV	GV C	PEN	CLOSE	
레디	레디	GV각도현	재값	4	
기중중	기동중	GV각도지	령값	4	
에더	에러				18

Field test with a power converter

- 2.7 kW at 300rpm, H=1.4m, Q=0.187 m³/s
 - Rated speed of 900 rpm
 - **Gross head of 11 m**
 - Max. discharge rate of 1.4m³/s

Propeller Curves

Propeller curves for every 2° GV angle and rotational speed

- Max. power : GV angle of 50°
- Max. efficiency : GV angle of 30°

Power & Efficiency for the Speed

Optimum rotational speed for GV angles

- Max. power : GV angle of 50°
- Max. efficiency : GV angle of 30°

Power & Efficiency for GV angle

K wate

- **Operation range for GV angles**
- Max. power : GV angle of 50°
- Max. efficiency : GV angle of 30°

Hill-Curves for Discharge Rate

% Color: power, dashed: efficiency

Hill-Curves for discharge rate, rot. speed and GV angle

Hill-Curves for Control

% Color: power, dashed: efficiency

Thank you for your attention